a2 United States Patent

Blevins et al.

US009110452B2

US 9,110,452 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

INFERENTIAL PROCESS MODELING,
QUALITY PREDICTION AND FAULT
DETECTION USING MULTI-STAGE DATA
SEGREGATION

Inventors: Terrence L. Blevins, Round Rock, TX
(US); Wilhelm K. Wojsznis, Austin, TX
(US); Mark J. Nixon, Round Rock, TX
(US); John M. Caldwell, Austin, TX

(US)

Assignee: FISHER-ROSEMOUNT SYSTEMS,
INC., Round Rock, TX (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 507 days.

Appl. No.: 13/611,733

Filed: Sep. 12, 2012
Prior Publication Data
US 2013/0069792 Al Mar. 21, 2013

Related U.S. Application Data

Provisional application No. 61/536,423, filed on Sep.
19, 2011.

Int. CI.

GOG6F 19/00 (2011.01)

GO5B 17/02 (2006.01)

GO5B 23/02 (2006.01)

U.S. CL

CPC ..o GO5B 17/02 (2013.01); GO5B 23/024
(2013.01)

Field of Classification Search

CPC e GO5B 17/02; GO5B 23/024

USPC e 340/815.4; 703/2

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0036868 Al* 2/2003 YutkowitZ 702/105
2006/0195375 Al* 82006 Bohn ... 705/35
2007/0047586 Al* 3/2007 Tiemanetal. ... 370/486
2008/0276128 Al 11/2008 Lin et al.
2009/0024429 Al* 1/2009 Jonesetal.ccooevrnne. 705/7
2010/0017008 Al 1/2010 Yelchuru et al.

(Continued)

FOREIGN PATENT DOCUMENTS

GB 2482367 A 2/2012
WO WO-2006/102322 A2 9/2006
OTHER PUBLICATIONS

Neal, Radford M. “Slice sampling.” Annals of statistics (2003): 705-
741.*

(Continued)

Primary Examiner — Michael D Masinick
(74) Attorney, Agent, or Firm — Marshall, Gerstein & Borun
LLP

(57) ABSTRACT

A process modeling technique uses a single statistical model
developed from historical data for a typical process and uses
this model to perform quality prediction or fault detection for
various different process states of a process. The modeling
technique determines means (and possibly standard devia-
tions) of process parameters for each of a set of product
grades, throughputs, etc., compares on-line process param-
eter measurements to these means and uses these compari-
sons in a single process model to perform quality prediction
or fault detection across the various states of the process. In
this manner, a single process model can be used to perform
quality prediction or fault detection while the process is oper-
ating in any of the defined process stages or states.

30 Claims, 18 Drawing Sheets

TRATCR | J12:24

=N

Rt

s Jocis Help

(&2 £
Ack [Timen [3nii” " |Moduie/frogram | Opersiion TAlam {¥eza

£l Flow Meassurement

o ASUNIZON33 Uit FWPOMALARMZ Operation Mubsie Any Aoy AIGD
\\ -

\. 50

\\ o

[OEw_ P it [iR i

218 1220 12.25 12:36

US 9,110,452 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0035755 Al 2/2012 Byrne et al.

2013/0069792 Al* 3/2013 Blevinsetal. 340/815.4

2013/0185055 Al* 7/2013 Theoretetal.c....... 704/9

2013/0326620 Al* 12/2013 Merzaetal. ... 726/22
OTHER PUBLICATIONS

Koller, Daphne, and Raya Fratkina. “Using Learning for Approxi-
mation in Stochastic Processes.” ICML. 1998.*

Nomikos, Paul, and John F. MacGregor. “Monitoring batch processes
using multiway principal component analysis.” AIChE Journal 40.8
(1994): 1361-1375.*

Zhao, Chunhui, et al. “Stage-based soft-transition multiple PCA
modeling and on-line monitoring strategy for batch processes.” Jour-
nal of Process Control 17.9 (2007): 728-741.*

Dunia et al., “Multistate PCA for Continuous Processes,” American
Control Conference (ACC), pp. 6673-6678 (2012).

Dunia et al., “Multistate PLS for Continuous Processes,” American
Control Conference (ACC), pp. 2794-2799 (2012).

Search Report for Application No. GB1216480.2, dated Jan. 14,
2013.

* cited by examiner

US 9,110,452 B2

Sheet 1 of 18

Aug. 18, 2015

U.S. Patent

\

[ov] yo0g

TOUINGD
_ oY mAi OIONVAQY Anﬂﬂ

| oY _LL aid _Al_!_ I |
I

| OV [04 i ¥ |
I

4

T ZY

PRy
e

US 9,110,452 B2

Sheet 2 of 18

Aug. 18, 2015

U.S. Patent

AR

123 Bil
HOSTIOONMG | HOSSIATOH
OLLATYNY V1¥3 INIMING

o

SNOLLY LSHHOM

e
_ “
| e | gt ! 98§ —
zod | s EETT w)

L Isindinof ! FOVANILN

b _ w H3sn
i

w |

i

P i

; |

H

, w

! |

i

i i

! w

i

y |

w w

) — DL i

m |

! HITIOULNOD , S TVETTE u,

| Ceor pfENs—

u : _

i s !

_ w

H

' |

i i

f H

‘ i

| u

! i

! i

” WALSAS |

! LNIWNIOVNYIN SNOILYEIAO | 310N

{ i 1

m zo1- o |

{ 0L u -

w INYId ! T

e e e et e e e e e e e et e e e et e e et e e o o e e e e e o ot e o ot e o e e e o o e - ~ 001

U.S. Patent Aug. 18, 2015 Sheet 3 of 18 US 9,110,452 B2
200
4
Obtain Process Parameters -—212
Obiain State Parameter Definition |--214
Determine Range of Stale Paramaler [~ 216
222 Fault Detection i Quality Prediction /_220
A ¥

Determine Time Shifts 224

Time Shift Data to Getf Dala Slices }-226
v v

— 248 228

Calcuiste State Means Caleulate State Means

¥ v

Store State Means 250 Store State Means ~230
v ¥

Determine Data Slice Maans 292 Determine Data Slice Means ~232
¥ ¥

Calculate Deviations From Mean —254 Calcidate Deviations From Mean —234
¥ ¥

Filter Deviations From Mean ~-255 Filter Deviations From Mean 7239
: v

Generate Process Madel — 255 Generate Process Modet ~238

FIG. 3

US 9,110,452 B2

Sheet 4 of 18

Aug. 18, 2015

U.S. Patent

¥ old

A

{ongaN UiR] |

ﬂ | ejeq) o4 | |eQ paieps | BBy _mgmcow_
........................ ASHBENY B oo

MI3LIW GIHD

|3

AOTE NI

1300

AX3 3T O G100

shgar] pur g

sy magy

ON "POS{y BIRG WELB0ULY
ON pespy e pelun

AR

EREC

POLD HONG WL £ ISUCMAN LB

14 JO JOQUINN

G ISNGLY POSHY 0 JBQUINN poul

921201 RTLOLLDT LNN £ 80!
STZLYL LLIOLOT INN £ wo
£405P4 01HOLLOZ LNN €789
MO LX3 N3N0 T Rgy M
HAUIWHO a8
2,,9“.\5%_@2%&@%

301M3C 13U sy
0718 Q00 sy
G107 LNN/E R Bt

LQUOE
LNNE w(

SGGOTL BZIL0L0Z INN € 81, 1 ﬁcmwmmuw

SIEpOYY

&
X, -,
Wy

Tx oK«

b3
-

vvmaw £ [5 |4]90¢) 5TLIOLOZ INN € 8914 <4t}

dpy suondo MelA 1p3 e

jeanep - LNN/E 8914 4

US 9,110,452 B2

Sheet 5 of 18

Aug. 18, 2015

U.S. Patent

S 'Old

{spuanag) auny
N 00t 062 302 08 801 0& ¢
1 . i § I— annr} ¢ 00 f0i-
[T N A L I LRIt LT LI S LANCANS NS SNOE 10NN INOR I0nt 100t Hnt ans s 48 V1 Y U8
aiepdn m i 1
““““““““““ W +0 80
A1 nduy apniou {] k
v 170 490
{pspunoy] | 1.1
Aoy , 60 370
38| Gi) ABje(] - 3
70 121
360 409
£14687 0 qusin) F40 +7C
abrany +10 u:m
p . 92LZOL BZLOLLOTZ LNN € 3014 i
ARG 3 . 3
RURRISISS Jgp Juo €ZLLPE LLLOLLOZ INN £ B0t G- T
377 ELOSYL HLL0IDZ LNN £78514 41 m.._
R 360 4g0 MOTS LX3 ¥3MOT v
; uojigeu0]) $50i0) A - HALFH AHO Ry
Loy oy MOT MOTE NIVIN Ry~
ORI $SB1 FOIAIA LT UND mr
v e MO8 GI00 iy~
HILIN SIHD Q95001 6210107 INN/E 801 813
$YOPZ SOS0B00T LNNIE 801G 8
- pRUIRI] ISMBIS HCMIDN _ s |G- 3
M NN B R
MR dIHD, 10 sk | S{BpON
[@ Ol 2llsco | 7K € <> e E A MILIN dHD 757)

digy suORGD MaIA uDT

3]s}l

jeanan - LNN/E 891 %

US 9,110,452 B2

Sheet 6 of 18

Aug. 18, 2015

U.S. Patent

o5 LI Je—

¢ee

==

o

0ze
UORRISUET)
1PROW

8t
s

A.KKE

S
UES W04
LoneIAs(Q

gi8— .ﬂ

v9 'Old

020 (8805 1 Tl e B e
UEBYY SUHG et paubyy . Wi : :
) ~ 71 osun)) e MU lgld ol
212G £iousp feinq AW _ $88304d
ple— A& alg—" | A Zte
SHIUS e |
"o el 0eD
LB SIIR { 2
5880044 UG sul]
ae—" 4 aos— A&
BOBHSIU
1950
S0E—

US 9,110,452 B2

Sheet 7 of 18

Aug. 18, 2015

U.S. Patent

g9 "9ld
e
uoljeialiet) yes m %9
VOd [Cigpopy [Ol e BEOI WO 14
PPON UCHBIABY] <
¥0¢ S
7) }) DD :
244 ozy eLy oLy~ r uBaly S0 i e
el DLW $$8301d
¢ |
}
pLy—" 208
R0
SUBB SIFIS
$$8001d

2y — w

BOBUSIY]
1osn

508 —

U.S. Patent Aug. 18, 2015 Sheet 8 of 18 US 9,110,452 B2

500
\
b
COLLECT PARAMETER DATA 502
FROM PROCESS
: TIME SHIFT DATA ' ~504
PRODUCE DATA SLICES | 206

v

DETERMINE TIME SLICE 508
MEANS

v

CALCULATE DEVIATIONS 508
FROM MEANS

v

FILTER DEVIATIONS 510
FROM MEANS

v

IMPLEMENT MODEL

v

PERFORM ALARMING

—512

—514

FIG. 7

US 9,110,452 B2

Sheet 9 of 18

Aug. 18, 2015

U.S. Patent

8 "Old
SURSP SIS S804 A%
SINPOIN
Buneinoen
suURA
0HS Bie(Q
]
: 809~ w
4200 E&‘ L
SINPoN h 70 e
Wiely le— jopop lesd 4 lesd | OPD - ;
. UBSIN WO g4 Aiowialy @4 DIIPON g e Aiowspy [5380044
uonBIAS(HYS sul} gt
] } i ; ; \
p19- 109~ 019~ 609~ 909~ p0o- 208
SHINGS
SuBspy 21RIS 5S8001d =

US 9,110,452 B2

Sheet 10 of 18

Aug. 18, 2015

U.S. Patent

no

FHnind

6 "9Olid
S8l VEL
e R B DD ﬂ
v A \
” ,“_ I ¥l
m ed le v el & e L]
| i A eed zhe
] [EELATYE00] | Aeeq e N
: WIT HH00 084 01L —"
300N ! . ~ I
C C-3igwNg wHoo| ¢ 2 vos L0
, < T
] N — i}
J 4§ uogalpaly [E g T
¥l O - i Gl
e + | 571 e fER0 o 0
- e .
OIS Ev v 4] o
ARINARS W3 0018 =57 ey e e
« — 0S. ~0EL
_ — 7 O - AW _
LOV LNV e N ZL {800 YO ‘W 'STd ‘NN
L0V Qe &—) UG g iy 0 U T gid o T
INLOY WHONGY € Y e i vl
INLOY OYE g— 12474 4 SNSYIN OvY

00L -~

&A

e

MOTIOH

FidWVS

A

804

U.S. Patent

Aug. 18, 2015

Sheet 11 of 18

US 9,11

0,452 B2

902
Analytics Overview /
, . ; Prediction Alarm or
. On-Line Batch Analytics p o
SALINE. a—=—"""1| " Process Fault Indication
BatehlD Stage Sefe Predicion Faut, "
1232 "g§ PRCCESS RUN {131 Tag
BalchlD Stage State Predicion Fault |
f 910
Fault Detection / Quality Parameter Prediction /
——] P
s Indicato e B Juakity N
aocess Indicator 1 o 8 7 Dualty 2)
65 005 215:1 Pk £: 51572009 21511 PM
128217304 0ot 4
: '\MM 1
Gi
exocgss ndicater 2
wa
!
!
9(}8
Parameter Trend(s) Confribution /

fiifution
Coatrbuition
f

13

FIG. 10

US 9,110,452 B2

Sheet 12 of 18

Aug. 18, 2015

Vil "Old

WY LS ErL LLOT/ETH pealy /0 poOn Y09 IO HIXIN
WY o5l L10TIBZIL orery /N poog O vao NI

i WBNISET |4 Baly 14 41k DA pogie onpopy

| AojsiH uiely | uooslag Jned | uogolpald Aleny {351 snonunuod | 181 yoled

AWUO SonAjBuY $59004d

exs [} X~ sunug sophfeuy ssasosd [[55] [fal CRBuL0SIRIYISEg SOV euyBieg BRasp 22um 3000] » ())
53 00N J3UIGIU; - 151 SNONURUOY - SULLE SoRAERUY 530044

U.S. Patent

dil "Old

US 9,110,452 B2

Sheet 13 of 18

Aug. 18, 2015

SAITY ULely ¢ VY IYG2 VYOO WIXIN WY 0S¥l LI0ZieT

SMEIS WBYY e BBV (4 NIOIG |4 @inpop |4 wsE&mo_

| Auoysiy wuely | voomaq jined | uoioipaid Aenn | 1T snonuuod | st yojed

SUUD SonAjeUY 5892044

[] X - suguo sopfeuy sseooxg (X167 [fa]or GemnauiuGsanteuyoleasoienyuoleg Brospl e um spoJiA L | & mj @

120X JOUIBILY - 15T SNONUNLOY - BUHUD SonAiBuy $583044d

U.S. Patent

US 9,110,452 B2

Sheet 14 of 18

Aug. 18, 2015

U.S. Patent

Skl "Old

B GaPy il Sigpie 28910 Spevid 002920 om#v&m
I Y 1Y
rll\// lf(rz!» I\Lk.\\.\.\
. -
4
434
L S, .
el i
m W
BTy W mﬁqw
REZE
hiodes W&Bm_x wliey W usnsaleg YNy “ uopReld At :.Ow 1817 SRONURUOS |
N
EEEE @o suug 5204 Uy 5S9301d
208 G Ko BlgUQ SORARUY 83004 @@MBG\ 48 {2UYLIRENENED: JEUM S
2o oz e - {SI SOTUYU0Y - UG SUAENY SSAa0ig |

GARYY Ry

REE

(VG0 VO HINIE WY 0SSy SL0eTIL

SHEIS MUY |4

20 |4 YOOI {4 snnoW a4

ouii/aieq |

§ Rsoysiy wery m VORISR e

UOIpES \Emng 18171 SNORBLIMOT

B Yoy

FUHUD SIBAIRUY $58204d

m - augug SRRy S58304d

$2.010XT TRUIR - 1817 SHORURLQY ~ BURUQ SORAJELY 5523044

US 9,110,452 B2

Sheet 15 of 18

Aug. 18, 2015

U.S. Patent

dil "Oid

QT ATV G20

I

016

009

A%

,,,,,,,,,,,,,,,,, R e Bt 2

0Tyl Wb

Rl 970 8@_3
(Y00 VA0 WG Teron
LGS s
080y, BLOZIGZIL o
an...._ommx VG YK A

?..o.«w_r ::m?\m BCROMDQ 4NES T_o_wo%mi Aneng M 1S SROAURLOY | 11T WY

SUIUG SOBARUY $53004d

D X o v guiu) SORAIRUY $52904] [} 7 Al

AU TN BN S AR

JEIGTH M R ERIETH A

SRORURLE: - QUKLG SHASIy 580018 m

ANV Bk

LYO0 Yao NI
YD
0z O5EFL LBOTIBEL ¢

BUHTISIN

YOI NI Ao

FERE

mﬁewf Wiepy m UoHTASA 1N 4 TE e .:UM 1387 mnonécoi 1517 40ieR

QUHLQ 3INAJEUY S0

Rl D X - auyug sondpuy ssesoid. (NIE oo

SR &)

130X 1010 - 1817 SNONURRDS ~ SRy SHRAIBUY S5330iE “

US 9,110,452 B2

Sheet 16 of 18

Aug. 18, 2015

U.S. Patent

Vil "old

il) A I R I
H j i R Vol oo Wil
{ {0407 2PBOSED
simesduta) e of aayesaduse] sopeay
ANOSIATY uuepy Auyg Aug sinpop uonedl ZRGYIVI0S WIS B0 SEIZO MOTKR AN
Auntig) asbwseay | ubeyy | uoRaly | websigioinpop! WA | W, upauiy | oy
\ B
1 Fers e = [l siheaEs - v > Y
[N Blilo <R B =]
YV T MOMISINIGY] aueu s fat .| Aoy drayeR
> &5 m sonny, Buncory
= mr@‘_” } =
EIRERN S I5

Wa 013zl | MORVHLSINNGY] swewsssn fal

] ﬂ:.wes

3

]

US 9,110,452 B2

Sheet 17 of 18

Aug. 18, 2015

U.S. Patent

gZi 'Ol

08:Ch 521 44 q1zh
i B B B B i}))) 1 1 1 D

01 : e
] | | [0t L g waa)

02

g

-8

-06

00 Auy Auy appoyy uoueisdQ IHNYTVINOY WIZ 80 SOETT BATE &

JUSUIBINSSBOY MOiL I SEoR | UHEY | UORESEOE) | WEIB0IARINGON| U | upsug | y3y
dief sjod] suopesyddy oeiq Mot g e «m;:mv
el o o
o | [Bl
o avpeT] | HOLvHLSININGY] swes s faT | sinpoy

%

US 9,110,452 B2

Sheet 18 of 18

Aug. 18, 2015

U.S. Patent

J¢L "9Old

dusown | spur feneal Joiduiseq | enusiay ineuiied
0g.dE A A qi-zi
ﬂ _ : 3 0 50 50 10
io1do1
lozdor
ool : 0
ovior 10
106308 1oz
09109]
i F0E
F0L10L40L w..J 1
o5 toeos Tog log o
06 foa106 t0a 0 108
109
158 JOJEMOY WI3 Ly,
dlofl siool suonecyddy josigo Motk 1o eid 7
- | 108
LCBLLIOU} DIIBIDOSSY .
sysenbay oy | 108
JUBLLBINSSESA MOl4 WIS 90
disH Sjo0f SuouEoiotY 00l0 MBI 10T 9k
]

US 9,110,452 B2

1

INFERENTIAL PROCESS MODELING,
QUALITY PREDICTION AND FAULT
DETECTION USING MULTI-STAGE DATA
SEGREGATION

RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C.
§119(e) of U.S. Provisional Application Ser. No. 61/536,423,
entitled “Inferential Process Modeling, Quality Prediction
and Fault Detection Using Multi-Stage Data Segregation,”
filed Sep. 19, 2011, the entire disclosure of which is hereby
expressly incorporated by reference herein.

FIELD OF THE DISCLOSURE

This patent generally relates to process control system
modeling and, more particularly, to methods of performing
process modeling, quality prediction and fault detection in a
continuous or a batch process using multi-stage or multi-state
data segregation.

BACKGROUND

Process control systems, like those used in chemical, petro-
leum or other processes, typically include one or more pro-
cess controllers and input/output (I/O) devices communica-
tively coupled to at least one host or operator workstation and
to one or more field devices via analog, digital or combined
analog/digital buses. The field devices, which may be, for
example, valves, valve positioners, switches and transmitters
(e.g., temperature, pressure and flow rate sensors), perform
process control functions within the process such as opening
or closing valves and measuring process control parameters.
The process controllers receive signals indicative of process
measurements made by the field devices, process this infor-
mation to implement a control routine, and generate control
signals that are sent over the buses or other communication
lines to the field devices to control the operation of the pro-
cess. In this manner, the process controllers may execute and
coordinate control strategies using the field devices via the
buses and/or other communication links.

Process information from the field devices and the control-
lers may be made available to one or more applications (i.e.,
software routines, programs, etc.) executed by the operator
workstation (e.g., a processor-based system) to enable an
operator to perform desired functions with respect to the
process, such as viewing the current state of the process (e.g.,
via a graphical user interface), evaluating the process, modi-
fying the operation of the process (e.g., via a visual object
diagram), etc. Many process control systems also include one
or more application stations (e.g., workstations) that are typi-
cally implemented using a personal computer, laptop, or the
like and that are communicatively coupled to the controllers,
operator workstations, and other systems within the process
control system via a local area network (LAN). Each appli-
cation station may include a graphical user interface that
displays the process control information including values of
process variables, values of quality parameters associated
with the process, process fault detection information, and/or
process status information.

Typically, displaying process information in the graphical
user interface is limited to the display of a value of each
process variable associated with the process. In some cases,
process control systems may characterize simple relation-
ships between some process variables to estimate quality
metrics associated with the process. However, in most cases

15

25

30

40

45

2

where a resultant product of the process does not conform to
predefined quality control metrics, the process and/other pro-
cess variables can generally only be analyzed in detail after
the completion of the product.

The use of predictive modeling for process quality predic-
tion and fault detection is beginning to be prevalent in both
continuous processes and batch processes. As is known, con-
tinuous processes operate in a continuous manner on a set of
continuously supplied raw materials to produce an output
product. Generally speaking, the process controller(s) used in
continuous processes attempt to keep various process param-
eters the same at particular locations within the process. How-
ever, because continuous processes regularly experience
variations in, for example, throughput, the types or grades of
product being made, the makeup of the raw materials input to
the process, etc., it is difficult to perform quality predictions
of the output of the process on-line (i.e., while the process is
operating) because the process parameter values may change
atany particular location based on a change in the throughput,
the grade of the product being made, etc. Batch processes, on
the other hand, typically operate to process a common set of
raw materials together as a “batch” through various numbers
of stages or steps, to produce a product. Multiple stages or
steps of a batch process may be performed using the same
equipment, such as a tank, while others of the stages or steps
may be performed in other equipment. However, because the
temperature, pressure, consistency, pH, or other parameters
of'the materials being processed changes over time during the
operation of the batch, many times while the material remains
in the same location, it is difficult to determine whether the
batch process is operating at any particular time during the
batch run in a manner that is likely to produce an end product
with the desired quality metrics. Thus, it is also difficult to
perform quality prediction and fault detection within batch
processes.

One known method of predicting whether a currently oper-
ating process is progressing normally or within desired speci-
fications (and is thus likely to result in a final product having
desired quality metrics) involves comparing various process
variable measurements made during the operation of the on-
going process with similar measurements taken during the
operation of previously run process, the outcome of which
has been measured or is otherwise known. However, as noted
above, runs of continuous processes vary based on throughput
and product grade and runs of batch processes typically vary
in temporal length, i.e., vary in the time that it takes to com-
plete the batch, making it difficult to know which time within
the previous process run is most applicable to the currently
measured parameters of the on-line process. Moreover, in
many cases, process variables can vary widely during the
operation of the process, as compared to those of a selected
previous process, without a significant degradation in quality
of the final product. As a result, it is often difficult, if not
practically impossible, to identify a particular previous run of
the process that is capable of being used in all cases to mea-
sure or to predict the quality of subsequent process runs.

A more advanced method of analyzing the results of on-
going continuous and batch processes that overcomes one of
the problems identified above involves creating a statistical
model for the process based on various runs of the process.
This technique involves collecting data for each of a set of
process variables (parameters) from a number of different
runs of a process or for a number of different times in a
process and identifying or measuring quality metrics for each
of'those sets of data. Thereafter, the collected parameters and
quality data are used to create a statistical model of the pro-
cess, with the statistical model representing the “normal”

US 9,110,452 B2

3

operation of the process that results in desired quality metrics.
This statistical model of the process can then be used to
analyze how different process parameter measurements made
during a particular process implementation statistically relate
to the same measurements made within the processes used to
develop the model. For example, this statistical model may be
used to provide an average or a median value of each mea-
sured process parameter, and a standard deviation associated
with each measured process variable at any particular time or
location during the process run to which the currently mea-
sured process variables can be compared. Moreover, this sta-
tistical model may be used to predict how the current state of
the process will affect or relate to the ultimate quality of the
product produced at the end of or at the output of the process.

Generally, both linear and non-linear statistically based
process predictors can be used to predict product quality
parameters that are not available for on-line measurements.
Such process parameter predictors are known by various dif-
ferent names including, for example, soft sensors, inferential
sensors and the like. There are, in fact, several types of model
based linear predictors that are used to perform process
parameter prediction within processes, with the most preva-
lent of these model based predictors being multiple linear
regression (MLR) predictors, principal component regres-
sion (PCR) predictors, principal component analysis (PCA)
predictors, partial least squares (PLS) predictors and dis-
criminate analysis (DA) predictors. Such predictors can be
used in both off-line and on-line analysis tools to predict a
process parameter, such as a quality measure of a product
being produced by a process. Additionally, it is known to use
principle component analysis (PCA) techniques to perform
fault detection within processes.

However, known model based predictors have a significant
deficiency in that they are generally unable to adjust the
predictive process models used therein to the changing pro-
cess states that may result from, for example, a change in the
production rate or throughput of the process, a change in
product grades, etc. In fact, to deal with this issue using prior
art techniques, it is necessary to construct a separate model
for every possible production rate or product grade. However,
this technique leads to a predictor that is very complex to
build and use, because developing, storing and using the
numerous predictive models becomes very processor inten-
sive, requires a lot of memory space and is complex to imple-
ment and maintain in real-time systems.

Thus, while it is known to use statistical process modeling
techniques to model processes, such as continuous processes,
these modeling techniques typically only work well when a
continuous process is stable or well-defined, i.e., when there
is little variation in the product being made or in the through-
put of the process. As a result, the on-line implementation of
analytic tools such as PCA and PLS techniques for fault
detection and prediction has, in many instances, been limited
to continuous processes in which a single product is pro-
duced. In such instances, the process is often treated as a
single unit with a fixed set of measurements and lab analyses.
For these types of processes, a single PCA or PLS model may
be developed and applied in an on-line environment. Unfor-
tunately, these techniques do not address the requirements of
continuous or batch processes in which multiple grades of
products may be produced using one or more different pieces
of plant equipment (at different times) or having variable
throughputs, or in which other operating conditions are
changed regularly.

SUMMARY

A process modeling technique uses a single statistical
model, such as a PLS, PRC, MLR, etc. model, developed

10

15

20

25

30

35

40

45

50

55

60

65

4

from historical data for a typical process and adapts this
model for use in quality prediction or fault detection for
various different process states. More particularly, the mod-
eling technique determines means (and possibly standard
deviations) of process parameters for each of a set of product
grades, throughputs, etc., compares on-line process param-
eter measurements to these means and uses these compari-
sons in a single process model to perform quality prediction
or fault detection across the various states of the process.
Because only the means and standard deviations of the pro-
cess parameters of the process model are updated, a single
process model can be used to perform quality prediction or
fault detection while the process is operating in any of the
defined process stages or states. Moreover, the sensitivity
(robustness) of the process model may be manually or auto-
matically adjusted for each process parameter to tune or adapt
the model over time.

A process quality prediction and fault detection system
using this modeling technique has significantly increased
functionally and usefulness in both continuous and batch
processes, as the quality prediction and fault detection system
allows the status of an inferential sensor to be adjusted, and
offers additional insight into the current on-line operation of
a process for operating personnel.

The disclosed modeling technique, which may be used in
batch or continuous manufacturing processes, divides the
operation of the process into the different stages or states
associated with or defined by a state parameter that, typically
speaking, is related to or are indicative of the various possible
states of the process. The state parameter may be, for
example, a product grade, a throughput of the process, or any
other significant disturbance variable of the process.

The modeling technique first develops a quality prediction
or fault detection model based on measured operation of the
process across multiple process stages, and thereafter uses
this model to perform quality prediction or fault detection
during on-line operation of the process. During the model
creation stage, the method collects training data generated
from the process, the training data including values or mea-
surements of the various process parameters to be used as
inputs to the model being created, values of a state parameter
defining the process states, and values of a quality parameter
or fault indication. The method may, for a quality prediction
model, time shift the process input parameter values and state
parameter value to align this data with the quality parameter
to be predicted, to thereby eliminate the effects of variable
process delay between process inputs and the quality param-
eter being predicted. The time shifted data (in the case of
generating a quality prediction model) or the training data (in
the case of a fault detection model) is then processed to
determine a set of process parameter means, a state parameter
mean and a quality or fault parameter mean for each process
state. These process state means and the state parameter value
of each time slice of data (in the time aligned data or the
training data) are then used to develop a set of time slice
means for each time slice of data, and the instantaneous
values of the process parameters and the time slice means are
then used to develop a set of deviation from the means for
each time slice. The sets of deviations from the means may
then be filtered, and the filtered values of the deviations from
the means are used to develop the process model, such as a
PLS model, a neural network (NN) model, a MLR model, a
PCA model, etc. The process state means are also stored as
part of the model.

Thereafter, during the on-line operation of the process, the
model may be used to perform quality prediction or fault
detection. In particular, process parameter and state param-

US 9,110,452 B2

5

eter measurements are obtained from the process as the pro-
cess operates on-line, and this data may be stored in tempo-
rary memory. For a quality prediction model, the process and
state parameter measurements may be time shifted in the
same manner as performed during development of the model.
In any event, sets of time slice data are obtained from the
process, each time slice of data including a value of each of
the process input parameters and the state parameter. The
process parameter means and the state parameter means
stored as part of the model are then used, along with the value
of the state parameter of each time slice to determine time
slice means for the process parameters of each time slice. The
time slice means of each time slice of data and the values of
the process parameters and the state parameter of the time
slice are then used to create a set of deviations from the means
for the time slice of data. The deviations from the means for
each time slice may be filtered and the output of the filter are
then input to the process model to perform quality prediction
or fault detection on-line within the process.

Significantly, the model so created and operated will be
ableto make quality predictions or fault detection across all of
the defined process states without needing to change the
process model, or develop a different process model for each
process state. In fact, the varying operation of the process in
the different process states is accounted for in the operation of
changing the time slice means used to determine deviations
from the means input to the model. Moreover, filtering of the
deviation from the means provides for better quality predic-
tion or fault detection when the process is transitioning
between different process states.

Thus, model generation and data analytics techniques
using process state definitions previously determined for a
process develop different sets of deviations from the mean for
various different operating states of the process and then use
these different sets of deviations from the mean in a single
process model, without needing to generate a new or different
process model for each operating region or state of the pro-
cess. Put another way, a process model used to perform on-
line data analytics for a process can be determined once for
the process and be used to analyze the process even when the
process operates in different operating states, without need-
ing to determine a separate model for each stage or state of
operation of the process. Instead, the inputs to the model are
based on deviations from means which are varied or are
changed for the different process stages or states, so as to
provide the model with the ability to make quality predictions
or to perform fault detection based on the process state in
which the process is currently operating without changing the
model itself.

If desired, the process state means may be adapted during
on-line operation of the process by collecting additional data
from the process pertaining to one or more process states,
such as process states for which no or little data was collected
during the model creation phase, or for process states in
which the process operation may have changed since model
creation. After collecting new data, the process means for the
new or changed process state may be determined and stored
as part of the process model, to thereby allow the process
model to be used to perform quality prediction or fault detec-
tion in the new process state or the changed process state
without regenerating the process model itself.

Still further alarms and alerts may be automatically gener-
ated based on the operation of the on-line quality predication
and fault detection system, and these alarms or alerts may be
provided to a user during operation of the process to enable
the user to make desired changes or to take corrective action.
Still further advanced user interface functionality allows a

20

30

40

45

55

6

user to easily view process variable trend plots at or near the
time a particular alarm or alert was generated to determine
which process parameter(s) may have been responsible for
the alarm or alert. These trend plots may enable a user to view
the historical values ofthe process parameters compared with
the mean and standard deviations of the process parameter at
or near the time of the alert without needing to manually
search through a data historian for this information. Such
functionality makes trouble shooting and taking corrective
actions easier and faster during on-line operation of the pro-
cess.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a process control network having a
controller and field devices that may be used to implement a
process and various process modeling components to provide
process quality prediction and fault detection.

FIG. 2 is a block diagram illustrating an example process
control system including an example operations management
system that may implement an on-line process analysis sys-
tem for analyzing processes.

FIG. 3 is a process flow diagram illustrating a method of
generating one or more quality prediction models and fault
detection models.

FIG. 4 is a graph of a set of cross correlation plots illus-
trating the cross correlations between a set of process param-
eters and a quality parameter used to generate a quality pre-
diction model.

FIG. 5 is an enlarged view of one of the cross correlation
plots of FIG. 4 illustrating a delay time between a change in a
process parameter and a change in a quality variable as deter-
mined by a cross correlation function.

FIGS. 6A and 6B are hardware/software flow diagrams
illustrating a system for developing one or more statistically
based process models for use in performing process quality
prediction or fault detection in a continuous or a batch pro-
cess.

FIG. 7 is a flow chart of a process flow diagram illustrating
a method of using one or more quality prediction models and
fault detection models during on-line operation ofa process to
perform quality prediction and/or fault detection.

FIG. 8 is a hardware/software flow diagram illustrating a
system of implementing one or more statistically based pro-
cess models to perform process parameter quality prediction
in a continuous or a batch process using process state data
segregation.

FIG. 9 is a block diagram of a function block that may be
implemented to perform the quality prediction and/or fault
detection using a statistical process model created using the
method of FIG. 3.

FIG. 10 illustrates a series of user interface screens that are
traditionally provided to users to enable users to perform
analysis of parameter data associated with an alarm or an
alert.

FIGS. 11A-11D illustrate a series of user interface screens
that may be created and provided to a user to allow a user to
easily view process parameter trend plots related to an alarm
or an alert generated using a quality prediction or fault detec-
tion or other alarming system.

FIGS. 12-12C illustrate a series of user interface screens
that may be created and provided to a user to allow a user to
easily view process parameter trend plots related to an alarm
or an alert generated in a traditional process control system
alarming context.

DETAILED DESCRIPTION

FIG. 1 illustrates an example process control system 10 in
which an enhanced technique of performing on-line quality

US 9,110,452 B2

7

prediction and fault detection may be implemented. In par-
ticular, the quality prediction and fault detection techniques
to be implemented in the system 10 generate a set of quality
prediction and/or fault detection models from process data
and then enables a user to use these models to perform on-line
quality prediction and fault detection across multiple pre-
defined process states or process stages, in either a continuous
process or a batch process. As a result, these techniques are
applicable to or usable to perform quality prediction and/or
fault detection in continuous or batch process in which
throughput, product grade or some other disturbance variable
is changed regularly, without the need to generate separate
models for each possible process stage or process state.

The process control system illustrated in FIG. 1 includes a
process controller 11 connected to a data historian 12 and to
one or more host workstations or computers 13 (which may
be any type of personal computers, workstations, etc.), each
having a display screen 14. The controller 11 is also con-
nected to field devices 15-22 via input/output (I/O) cards 26
and 28 and may operate to implement one or more batch runs
of a batch process using the field devices 15-22. The data
historian 12 may be any desired type of data collection unit
having any desired type of memory and any desired or known
software, hardware or firmware for storing data. The data
historian 12 may be separate from (as illustrated in FIG. 1) or
apart of one of the workstations 13. The controller 11, which
may be, by way of example, the DeltaV™ controller sold by
Emerson Process Management, is communicatively con-
nected to the host computers 13 and to the data historian 12
via, for example, an Ethernet connection or any other desired
communication network 23. The controller 11 is also com-
municatively connected to the field devices 15-22 using any
desired hardware and software associated with, for example,
standard 4-20 ma devices and/or any smart communication
protocol such as the FOUNDATION® Fieldbus protocol, the
HART® protocol, the WirelessHART™ protocol, etc.

The field devices 15-22 may be any types of devices, such
as sensors, valves, transmitters, positioners, etc., while the
1/0 cards 26 and 28 may be any types of [/O devices conform-
ing to any desired communication or controller protocol. In
the embodiment illustrated in FIG. 1, the field devices 15-18
are standard 4-20 ma devices or HART devices that commu-
nicate over analog lines or combined analog and digital lines
to the 1I/O card 26, while the field devices 19-22 are smart
devices, such as FOUNDATION® Fieldbus field devices,
that communicate over a digital bus to the I/O card 28 using a
Fieldbus communications protocol. Of course, the field
devices 15-22 could conform to any other desired standard(s)
or protocols, such as any wired or wireless protocols, includ-
ing any standards or protocols developed in the future.

The controller 11 includes a processor 30 that implements
or oversees one or more process control routines (stored in a
memory 32), which may include control loops, and commu-
nicates with the devices 15-22, the host computers 13 and the
data historian 12 to control a process in any desired manner.
It should be noted that any control routines or modules (in-
cluding quality prediction and fault detection modules or
function blocks) described herein may have parts thereof
implemented or executed by different controllers or other
devices if so desired. Likewise, the control routines or mod-
ules described herein which are to be implemented within the
process control system 10 may take any form, including soft-
ware, firmware, hardware, etc. Control routines may be
implemented in any desired software format, such as using
object oriented programming, ladder logic, sequential func-
tion charts, function block diagrams, or using any other soft-
ware programming language or design paradigm. The control

20

25

35

40

45

55

8

routines may be stored in any desired type of memory, such as
random access memory (RAM), or read only memory
(ROM). Likewise, the control routines may be hard-coded
into, for example, one or more EPROMs, EEPROMs, appli-
cation specific integrated circuits (ASICs), or any other hard-
ware or firmware elements. Thus, the controller 11 may be
configured to implement a control strategy or control routine
in any desired manner.

In some embodiments, the controller 11 implements a con-
trol strategy using what are commonly referred to as function
blocks, wherein each function block is an object or other part
(e.g., a subroutine) of an overall control routine and operates
in conjunction with other function blocks (via communica-
tions called links) to implement process control loops within
the process control system 10. Control based function blocks
typically perform one of an input function, such as that asso-
ciated with a transmitter, a sensor or other process parameter
measurement device, a control function, such as that associ-
ated with a control routine that performs PID, fuzzy logic, etc.
control, or an output function which controls the operation of
some device, such as a valve, to perform some physical func-
tion within the process control system 10. Of course, hybrid
and other types of function blocks exist. Function blocks may
be stored in and executed by the controller 11, which is
typically the case when these function blocks are used for, or
are associated with standard 4-20 ma devices and some types
of'smart field devices such as HART devices, or may be stored
in and implemented by the field devices themselves, which
can be the case with Fieldbus devices.

As illustrated by the exploded block 40 of FIG. 1, the
controller 11 may include a number of single-loop control
routines, illustrated as routines 42 and 44, and, if desired, may
implement one or more advanced control loops, such as mul-
tiple/input-multiple/output control routines, illustrated as
control loop 46. Each such loop is typically referred to as a
control module. The single-loop control routines 42 and 44
are illustrated as performing single loop control using a
single-input/single-output fuzzy logic control block and a
single-input/single-output PID control block, respectively,
connected to appropriate analog input (Al) and analog output
(AO) function blocks, which may be associated with process
control devices such as valves, with measurement devices
such as temperature and pressure transmitters, or with any
other device within the process control system 10. An
advanced control loop 46 is illustrated as including inputs
communicatively connected to one or more Al function
blocks and outputs communicatively connected to one or
more AO function blocks, although the inputs and outputs of
an advanced control block 48 may be connected to any other
desired function blocks or control elements to receive other
types of inputs and to provide other types of control outputs.
The advanced control block 48 may be any type of model
predictive control (MPC) block, neural network modeling or
control block, a multi-variable fuzzy logic control block, a
real-time-optimizer block, etc. or may be an adaptively tuned
control block, etc. It will be understood that the function
blocks illustrated in FIG. 1 can be executed by the controller
11 or, alternatively, can be located in and executed by any
other processing device, such as one of the workstations 13 or
even one of the field devices 19-22.

Moreover, as illustrated in FIG. 1, one or more process
analysis routines or function blocks 50 may be stored and
executed by various devices of the process control system 10,
and these process analysis routines 50 may be used to imple-
ment the quality prediction and fault detection data analytics
described in more detail below. While process analysis rou-
tines 50 are illustrated as being stored in one or more com-

US 9,110,452 B2

9

puter readable memories 52 to be executed on processors 54
of the workstations 13 and the controller 11, the routines or
function blocks 50 can also be stored in and executed in other
devices instead, such as in field devices 15-22, in the data
historian 12 or in stand-alone devices. The process analysis
routines 50 are communicatively coupled to one or more
control routines such as the control routines 42, 44, 46, and/or
to the data historian 12 to receive one or more measured
process variable measurements and, in some cases, user
inputs related to performing data analytics. Generally speak-
ing, the process analysis routines 50 are used to develop one
or more statistical process models and to analyze on-going or
on-line process operation based on those models, as will be
described in more detail herein. The analysis routines 50 may
also display information to users, such as batch or continuous
process operators, regarding the on-line or on-going opera-
tion of the process, as being implemented by the process
control system 10. The routines 50 may also obtain needed
information from users to be used in the data analytics.

FIG. 2 is a block diagram illustrating a further example of
a process control environment 100 including an operations
management system (OMS) 102, also referred to as a Process
Monitoring and Quality Prediction System (PMS), which can
be used to implement an on-line process modeling and analy-
sis system described in more detail herein. The OMS 102 is
located within a plant 104 that includes a process control
system 106, which may include portions of or all of, for
example, the process control network 10 of FIG. 1. The
example plant 104 may be any type of manufacturing facility,
process facility, automation facility, and/or any other type of
process control structure or system. In some examples, the
plant 104 may include multiple facilities located at different
locations. Thus, although the plant 104 of FIG. 2 is illustrated
as including a single process control system 106, the plant
104 may include additional process control systems.

The process control system 106, which is communicatively
coupled to a controller 108 via a data bus 110, may include
any number of field devices (e.g., input and/or output devices)
for implementing process functions such as performing
physical functions within the process or taking measurements
of process parameters (process variables). The field devices
may include any type of process control component that is
capable of receiving inputs, generating outputs, and/or con-
trolling a process. For example, the field devices may include
input devices such as, for example, valves, pumps, fans, heat-
ers, coolers, and/or mixers to control a process. Additionally,
the field devices may include output devices such as, for
example, thermometers, pressure gauges, concentration
gauges, fluid level meters, flow meters, and/or vapor sensors
to measure process variables within or portions of a process.
The input devices may receive instructions from the control-
ler 108 to execute one or more specified commands and cause
a change to the process. Furthermore, the output devices
measure process data, environmental data, and/or input
device data and transmit the measured data to the controller
108 as process control information. This process control
information may include the values of variables (e.g., mea-
sured process variables and/or measured quality variables)
corresponding to a measured output from each field device.

Inthe illustrated example of FIG. 2, the controller 108 may
communicate with the field devices within the process control
system 106 via the data bus 110, which may be coupled to
intermediate communication components within the process
control system 106. These communication components may
include field junction boxes to communicatively couple field
devices in a command area to the data bus 110. Additionally,
the communication components may include marshalling

20

30

35

40

45

55

10

cabinets to organize the communication paths to the field
devices and/or field junction boxes. Furthermore, the com-
munication components may include I/O cards to receive data
from the field devices and convert the data into a communi-
cation medium capable of being received by the example
controller 108. These I/O cards may convert data from the
controller 108 into a data format capable of being processed
by the corresponding field devices. In one example, the data
bus 110 may be implemented using the Fieldbus protocol or
other types of wired and/or wireless communication proto-
cols (e.g., Profibus protocol, HART protocol, etc.).

The controller 108 of FIG. 2 (which may be a personal
computer or any other type of controller device) executes one
or more control routines to manage the field devices within
the process control system 106. The control routines may
include process monitoring applications, alarm management
applications, process trending and/or history applications,
batch processing and/or campaign management applications,
statistical applications, streaming video applications, control
applications, advanced control applications, etc. Further-
more, the controller 108 may forward process control infor-
mation to the OMS 102 and to a data historian (not shown in
FIG. 2). The control routines may be implemented to ensure
that the process control system 106 produces specified quan-
tities of a desired product within a certain quality threshold.
For example, the process control system 106 may be config-
ured as a batch system that produces a product at a conclusion
of'abatch. In other examples, the process control system 106
may include a continuous process manufacturing system.

The process control information from the controller 108
may include values corresponding to measured process and/
or quality parameters that originate in the field devices within
the process control system 106. In other examples, the OMS
102 may parse values within the process control information
into the corresponding variables. The measured process
parameters may be associated with process control informa-
tion originating from field devices that measure portions of
the process and/or characteristics of the field devices. The
measured quality parameters may be associated with process
control information related to measuring characteristics of
the process that are associated with at least a portion of a
completed product.

For example, the process may perform a chemical reaction
in a tank that produces a concentration of a chemical in a fluid.
In this example, the concentration of the chemical in the fluid
may be a quality parameter. A temperature of the fluid and a
rate of fluid flow into the tank may be process parameters. A
throughput of the process may be a process parameter defined
by a user to be a state parameter. The OMS 102, via process
control modeling and/or monitoring as discussed in more
detail below, may determine that the concentration ofthe fluid
in the tank depends on the temperature of the fluid in the tank
and the fluid flow rate into the tank. In other words, the
measured process parameters contribute to or aftect the qual-
ity of the measured quality parameter. The OMS 102 may use
statistical processing to perform fault detection and/or quality
prediction and to, for example, determine the amount of influ-
ence and/or contribution each process parameter has on a
quality parameter.

Additionally, the OMS 102 may model and/or determine
relationships between the measured process parameters and/
or quality parameters associated with the process control
system 106. These relationships between the measured pro-
cess and/or quality parameters make it possible to create one
or more calculated quality parameters. A calculated quality
parameter may be a multivariate and/or linear algebraic com-
bination of one or more measured process parameters, mea-

US 9,110,452 B2

11

sured quality parameters, and/or other calculated quality
parameters. Furthermore, the OMS 102 may determine an
overall quality parameter from a combination of the measured
process parameters, measured quality parameters, and/or cal-
culated quality parameters. The overall quality parameter
may correspond to a quality determination of the entire pro-
cess and/or may correspond to a predicted quality of a result-
ing product of the process. Of course quality parameters may
be measured on-line or off-line (e.g. using lab analyses).

As illustrated in FIG. 2, the OMS 102 includes an analytic
processor 114 that utilizes descriptive modeling, predictive
modeling, and/or optimization to generate feedback regard-
ing the status and/or quality of the process control system
106. The analytic processor 114 may execute routines (such
as the routines 50 of FIG. 1) to detect, identify, and/or diag-
nose process operation faults and predict the impact of any
faults on quality parameters and/or an overall quality param-
eter associated with a quality of a resultant product of the
process control system 106. Furthermore, the analytic pro-
cessor 114 may monitor the quality of the process operation
by statistically and/or logically combining quality and/or pro-
cess parameters into an overall quality parameter associated
with the overall quality of the process. The analytic processor
114 may then compare the values calculated for the overall
quality parameter and/or values associated with the other
quality parameters to respective thresholds. These thresholds
may be based on the predetermined quality limits of the
overall quality parameter at different times within the pro-
cess. For example, if an overall quality parameter associated
with a process exceeds a threshold for an amount of time, the
predicted final quality of the resulting product may not meet
quality metrics associated with the finished product.

If the overall quality parameter and/or any other quality
parameters deviate from the respective thresholds, the ana-
Iytic processor 114 may generate a fault indication within a
process overview chart and/or a process variation graph that
shows an explained and/or an unexplained variation (or vari-
ance) associated with the overall quality parameter and/or
may show a variable or parameter that generated the process
fault. The example analytic processor 114 manages the analy-
sis to determine a cause of one or more process faults by
providing functionality that enables an operator to generate
process quality graphs (e.g., combination graphs, micro-
charts, process variation graphs, variable trend graphs, graph-
ics, etc.) that may display current and/or past values of mea-
sured process parameters, measured quality parameters, and/
or calculated quality parameters, etc. Furthermore, in some
cases, the analytic processor 114 generates these graphs while
the process is operating and continually updates and/or re-
calculates multivariate statistics associated with each of the
graphs as additional process control information is received
by the OMS 102.

To perform these functions for continuous and batch pro-
cesses, the OMS 102 collects process data for a number of
different process parameters for each of a number of different
times in a continuous process or for each of a number of
different batch runs in a batch process. This data may be
collected from the controller 108 or the field devices within
the control network 110, from a data historian (e.g., the data
historian 12 of FIG. 1) that may have already collected and
stored process data for different batch runs of the process, or
from any other data source. The OMS 102 then processes this
data to generate one or more statistical models, and stores the
statistical models in, for example, a memory, such as a com-
puter readable memory of the OMS 102 or in one of the
memories 52 of the workstations 13 of FIG. 1. The statistical
models can then be retrieved as needed to analyze ongoing or

10

15

20

25

30

35

40

45

50

55

60

65

12

on-line process runs in the future. In particular, the OMS 102
may use the stored models to analyze or to enable a user to
analyze data collected during the on-line or on-going opera-
tion of a particular process run.

However, to analyze the data from a process run while the
process is operating on-line, the OMS 102 determines the
stage or state at which the on-line process is operating with
respect to the model. That is, in this case, the OMS 102
determines what inputs the model is to use to determine other
factors about the on-line process, such as whether any of the
parameters of the on-line process are abnormal or out of
specification with respect to those same parameters within the
model, whether the output of the on-line process will meet
desired quality metrics, etc. In fact, any analysis of the on-line
data that uses the statistical model will first determine the
stage or state of the statistical model that is most applicable to
the on-line data currently being collected. It is only after the
on-line data is aligned with the statistical model that further
analyses can be performed, such providing an operator with
screens to illustrate how the on-line process compares to the
model, performing statistical analyses to determine whether
the process is operating normally or within bounds or whether
the process is operating abnormally and/or whether the output
of the process is predicted to meet desired quality metrics,
such as desired consistency, concentrations, etc.

As one example, once the data for the current on-line
process is collected and the state of the process is determined,
the analytic processor 114 of the OMS 102 may provided a
series of different graphs or other displays to the user to
enable the user to determine the current operational stage or
viability of the on-line process run. Some of these graphs or
displays are discussed below, it being understood that other
displays, analyses or information may also or alternatively be
provided to a user, such as an operator, maintenance person-
nel, etc. As one example, the analytic processor 114 may
generate a contribution graph by calculating contributions of
process parameters and/or quality parameters to the overall
quality variable, or to the multivariate statistical fault indica-
tors of modeled and un-modeled process variations. The con-
tributions of the process and/or quality parameters may be
displayed as a modeled and/or an unmodeled variation of
each variable as a contribution to the variation associated with
the overall quality and/or the quality parameter associated
with the fault.

Furthermore, the analytic processor 114 may generate vari-
able trend graphs for any of the selected process and/or qual-
ity variables, jointly with a defined threshold. The variable
trend graph may show values associated with the variable
over a time of the process in relation to values of the variable
during similar times in previous processes, e.g., the model
variable values. By generating the contribution graph and/or
the variable trend graphs, the analytic process 114 may also
identify possible corrections to the process to mediate the
detected fault in the process. The variable trend graph may
assist an operator to determine a cause of a process fault by
providing an overlay of historical plots of data of the process
runs used to create the model with associated variations (e.g.,
standard deviations) with the current value aligned to the
same time scale.

The analytic processor 114 may also generate a quality
prediction graph to determine the effect of the correction(s), if
implemented, on the overall quality of the process. If the
correction(s) maintain or improve the overall quality to
within specified thresholds, the analytic processor 114 may
instruct the OMS 102 to implement the correction(s). Alter-
natively, the analytic processor 114 may send instructions to
the controller 108 to implement the process correction(s).

US 9,110,452 B2

13

Further, the example analytic processor 114 may generate
a microchart upon determining a fault associated with an
overall quality parameter and/or any other quality parameter.
The microchart may include values of the process and/or
quality parameters at a specified time (e.g., a time associated
with the process fault) in relation to a mean value and/or a
standard deviation for each of the parameters as predicted by
the process model. Additionally, the microchart may include
spark lines that indicate prior values associated with each of
the process and/or quality variables associated with the
model. From the microchart, the example analytic processor
114 may enable an operator to determine and/or select one or
more corrective actions to the process and/or determine if any
of the corrections will improve the process such that the
overall quality variable is predicted to be within the specified
limits.

The OMS 102 manages access to the process control data
including the process variation graphs, contribution graphs,
variable trend graphs, quality prediction graphs, and/or
microcharts via an online data processor 116. Additionally,
the online data processor 116 provides access to process
control operators to view process control data, change and/or
modify process control data, and/or generate instructions for
field devices within the process control system 106.

To provide access to the on-line analysis, the plant 104 of
FIG. 2 is illustrated as including a router 120 and a local
workstation 122 communicatively coupled to the online data
processor 116 via a local area network 124 (LAN). Further,
the router 120 may communicatively couple any other work-
stations (not shown) within the plant 104 to the LAN 124
and/or the online data processor 116. The router 120, which
may be communicatively coupled to the other workstations
wirelessly and/or via a wired connection, may include any
type of wireless and/or wired router as an access hub to the
LAN 124 and/or the online data processor 116.

The LAN 124 may be implemented using any desired
communication medium and protocol. For example, the LAN
124 may be based on a hardwired or wireless Ethernet com-
munication scheme. However, any other suitable communi-
cation medium and protocol could be used. Furthermore,
although a single LAN is shown, more than one LAN and
appropriate communication hardware within the workstation
122 may be used to provide redundant communication paths
between the workstation 122 and a respective similar work-
station (not shown).

The LAN 124 is also illustrated as being communicatively
coupled to a firewall 128 which determines, based on one or
more rules, whether communication from remote worksta-
tions 130 and/or 132 is to be permitted into the plant 104. The
remote workstations 130 and 132 may provide operators that
are not within the plant 104 access to resources within the
plant 104. The remote workstations 130 and 132 are commu-
nicatively coupled to the firewall 128 via a Wide Area Net-
work (WAN) 134.

The workstations 122, 130 and/or 132 may be configured
to view, modify, and/or correct one or more processes within
the process control system 106 based on the on-line analysis
performed by the OMS 102, or these workstations may
directly implement the on-line process analysis applications
and methods described herein. For example the workstations
122, 130 and/or 132 may include a user interface 136 that
formats and/or displays process control information gener-
ated by the OMS 102. As another example, the user interface
136 may receive generated graphs and/or charts or, alterna-
tively, data for generating a process control graph and/or chart
from the OMS 102. Upon receiving the graph and/or chart
data in the respective workstation 122, 130, and/or 132, the

10

15

20

25

30

35

40

45

50

55

60

65

14

user interface 136 may generate a display of a graph and/or a
chart 138 that is relatively easy for an operator to understand.
The example configuration of FIG. 2 illustrates the worksta-
tion 132 with the analytic user interface 136. However, the
workstations 122 and/or 130 may include two analytic user
interfaces 136.

Additionally, the user interface 136 may alert a process
control operator to the occurrence of any process control
faults within the process control system 106 and/or any other
process control systems within the plant 104 as determined by
the on-line analysis described herein. Furthermore, the user
interface 136 may guide a process control operator through an
analysis process to determine a source of a process fault and
to predict an impact of the process fault on the quality of the
resultant product. The user interface 136 may provide an
operator with process control statistical information as the
process fault is occurring, thereby enabling the operator to
make any adjustments to the process to correct for any faults.
By correcting for faults during the process, the operator may
maintain a quality of the resulting product.

Additionally, the user interface 136, via the example OMS
102, may display the detection, analysis, corrective action,
and quality prediction information. For example, the user
interface 136 may display a process overview chart, a process
variation graph, a microchart, a contribution graph, a variable
trend graph, and/or a quality prediction graph (e.g., the graphs
138). Upon viewing these graphs 138, the operator may select
additional graphs 138 to view multivariate and/or statistical
process information to determine a cause of a process fault.
Additionally, the user interface 136 may display possible
corrective actions to a process fault. The user interface 136
may then allow an operator to select (one or more) corrective
actions. Upon a selection of a correction, the user interface
136 may transmit the correction to the OMS 102, which then
sends an instruction to the controller 108 to make the appro-
priate correction in the process control system 106.

The workstations 122, 130 and/or 132 of FIG. 2 may
include any computing device, for example, a personal com-
puter, a laptop, a server, a controller, a personal digital assis-
tant (PDA), a micro computer, etc. The workstations 122, 130
and/or 132 may be implemented using any suitable computer
system or processing system. For example, the workstations
122, 130 and/or 132 could be implemented using a single
processor personal computer, single or multi-processor work-
stations, etc.

The process control environments 10 of FIGS. 1 and 100 of
FIG. 2 are provided to illustrate types of process control
systems or process plants within which the example process
quality prediction and fault detection methods and apparatus
described in greater detail below may be advantageously
used. However, the example methods and apparatus
described herein, if desired, may be advantageously
employed in other systems of greater or less complexity than
the example process control environments 10 and 100 and/or
the process control system 106 shown in FIGS. 1 and 2 and/or
systems that are used in connection with process control
activities, enterprise management activities, communication
activities, etc.

As way of background, many known process control sys-
tems typically provide analytic and/or statistical analysis of
process information. However, these systems generally
implement offline tools to determine the cause of and poten-
tial corrective actions needed for process faults or other pro-
cess conditions that may affect the quality of products being
produced by the process. These offline tools may include
process studies, lab studies, business studies, troubleshoot-
ing, process improvement analysis, and/or six-sigma analy-

US 9,110,452 B2

15

sis. While these tools may correct the process for subsequent
products, the tools cannot remediate and/or correct process
quality as the fault occurs. Thus, these offline tools do not
prevent manufacturing poor quality products.

The example on-line process control system analyses
described herein, on the other hand, may be used within a
process control system to provide in-process fault detection,
analysis, and/or correction information enabling an operator
to correct a process fault or to increase product quality while
the product is still being manufactured. In other words, pro-
cess corrections can be implemented in response to predicted
faults or predicted quality measures, during operation of the
process, such as at the time a fault occurs or substantially
immediately after a fault or other process upset leading to
poor quality occurs. While the example methods and appara-
tus described herein may be used to predict and/or correct
process faults or to account for changes in disturbance vari-
ables of the process to improve process quality of a continu-
ous and/or a batch process, they will be particularly described
with respect to continuous processes.

Generally speaking, the process quality prediction and
fault detection analytics described herein are used to perform
quality prediction and fault detection on processes (such as
continuous processes or batch processes) that operate in one
of'a number of different process states (also referred to herein
as process stages), without needing to create a new or differ-
ent process model for each of the various different process
states. More particularly, a method and system for performing
process quality prediction and fault detection analytics
includes a user interface application that first allows a user to
select the type of statistical model to be used to perform
quality prediction within a process. This quality prediction
may be, for example, based on a neural network (NN), a
multiple linear regression (MLR), or a partial least squares
(PLS) model. The method and system for performing process
quality prediction and/or fault detection analytics then gen-
erates this model for the process, and additionally may gen-
erate a fault detection statistical model, preferably in the form
of a principal component (PCA) model. The system may use
an application of Hotelling’s T and Q statistics, also known
as the squared prediction error (SPE), to determine fault con-
ditions associated with measured and unmeasured process
disturbances.

In the past, a major constraint on the application of NN,
MLR, PLS and PCA analyses arose from the fact that the
underlying prediction technology was based on determining
deviations of processes measurements from their mean value.
Unfortunately, an increase in plant production rate or a
change in product grade (or a change in some other distur-
bance variable of the process) typically caused mean values
of process parameters to shift. To account for these changes,
previous continuous data analytic applications needed to gen-
erate a different model to perform quality prediction or fault
detection at different values of plant production rates, product
grades, etc. As a result, traditional techniques of using NN,
PLS, MLR, and PCA models could generally only be applied
to perform quality prediction and fault detection in a continu-
ous process that was operated at a constant throughput and
that only made one product grade, because the mean value
associated with the process measurements remained nearly
constant only in this situation.

However, in many cases, the throughput of a continuous
process is frequently changed to maintain an inventory level
set by downstream processes or market demand. A swing
boiler in the power house area of a plant is one example of a
process that must constantly respond to changes in through-
put demand set by the plant master. The process operating

10

15

20

25

30

35

40

45

50

55

60

65

16

points may also change with the product grade that is being
manufactured. One example of this situation is in a continu-
ous reactor in which the target for output composition is
changed to allow different product grades to be manufac-
tured. To shift the output composition, it is often necessary to
change the operating point of one or more process inputs. In
response to these feed stock or process input changes, other
parameters such as cooling water flow, agitator power, relief
flow, etc. must also be changed to maintain controlled inputs
(such as batch temperature, constant agitation, and overhead
pressure) at constant values.

Generally speaking, the modeling techniques described
herein account for changes in the mean values of the process
measurements by automatically modifying the measurement
mean values used in the analytics. These modeling techniques
are thereby able to compensate for changes in production rate
or product grade (or other disturbances in the process) with-
out rebuilding or regenerating the process model used to
make predictions. Advantageously, the modeling techniques
described herein also compensate the deviation values used in
the model to account for the time required to transition from
different throughputs and product grades (or other distur-
bances in the process) thereby enabling a single statistical
model to be used to perform quality prediction or fault detec-
tion during operation of the process at different product
throughputs, when the process is operated to make different
product grades, and even for times during which the process
is in transition between different throughputs and product
grades.

More particularly, to minimize any deviations in quality
parameter prediction and to prevent false indications of a
fault, the mean values used in model analytics are changed to
match those expected for a given throughput or product grade.
Also, because the transition from one operating point to
another may take some time after the throughput or product
grade is changed, filtering is applied to the calculation of the
deviation from the mean, with this filtering being based on the
normal time that is required for the process to respond to a
grade or throughput change.

As a general matter, the quality prediction and fault detec-
tion techniques described herein for continuous or batch pro-
cesses use process state segregation and includes two basic
steps, namely, model generation and on-line use of the model
to perform process quality prediction and/or fault detection.
Additionally, if desired, process models may be adaptively
adjusted (on-line) when, for example, the process enters a
state or stage for which little no data was collected from the
process when building the model in the first place or when the
process has changed from the time during which the data used
to build the model was collected from the process.

FIG. 3 illustrates an example flow diagram 200 of a method
or technique that may be implemented by, for example, the
OMS 102 (which may be executed in, for example, one or
more of the routines 50 of FIG. 1) or within one or more of the
workstations 13 of FIG. 1, to develop one or more statistical
models foruse in quality and fault prediction in a process. The
statistical models developed using the techniques of FIG. 3
can thereafter be used to analyze on-line data collected from
a process to perform product quality prediction and/or pro-
cess fault detection.

While the flow chart 200 of FIG. 3 is described as using
collected process data to generate both quality prediction
models, such as PLS, NN and MLR models, and fault detec-
tion models, such as PCA models, for use in analyzing a
process, fewer or more types of models could be generated
instead or in addition to these particular types of models. In
particular, the method 200 of FIG. 3 could be used to generate

US 9,110,452 B2

17

only quality prediction models, only fault detection models,
or any combination of both types of models. Also, while the
method 200 of FIG. 3 will be described as producing each of
a set of PLS, NN and MLR models as quality prediction
models, and a PCA model as a fault detection model, other
types of statistical models could be developed as quality
prediction models and fault detection models as well or
instead. Moreover, the method 200 of FIG. 3 could be used to
develop only one or two types of these models and need not
develop all of these types of models.

Referring now specifically to FIG. 3, a block 212 obtains
process parameter data and quality parameter data for a pro-
cess. As noted above, the process may be either a continuous
or a batch process, but for the sake of description, the process
will be described herein as a continuous process. Thus, prior
to or during the model development technique depicted in
FIG. 3, the process is operated and generates process param-
eter data for each of a set of process parameters or process
variables, one of which will be referred to herein as a state
parameter or state variable. Additionally, quality parameter
data (also referred to as quality variable data or result variable
data) indicative of the quality variables or quality parameters
to be predicted when implementing on-line quality prediction
and fault detection for the process are collected from the
process during the times that the process parameter data is
developed or collected. The process parameter data and the
quality parameter data is stored in a memory as a set of model
training data, referred to herein as training data.

Importantly, when generating or collecting the training
data to be used in the model development technique of FIG. 3,
the process from which the data is collected is preferably
operated over a number of different process stages or process
states corresponding to different values or ranges of the state
parameter. In this case, the training data is collected for each
of'the process parameters and the quality parameters numer-
ous times during operation of the process so that, preferably,
process parameter data and quality parameter data is col-
lected for each of the states of the process, i.e., while the
process is operating in each of the different defined process
states, as well as while the process is transitioning between
states. Of course, the training data may be obtained during
normal or planned operation of the process over any desired
time periods, with these time periods being either contiguous
or being non-contiguous if so desired. The process parameter
data and the quality parameter data may include process
parameter values (including quality parameter values) that
are measured or otherwise collected real-time within a pro-
cess, process parameter values (including quality parameter
values) that are generated using off-line techniques, such
using lab analyses, process parameter values (including qual-
ity parameter values) input by or obtained from a user via, for
example, a user interface, or data obtained in any other
desired manner.

Atablock 214 of FIG. 3, the model development technique
200 determines or obtains an indication of the process state
parameter or state variable to be used when constructing the
quality prediction and fault detection model(s). This state
parameter or state variable may be predetermined or preset
by, for example, an engineer and stored as part of the model
development system, may be specified or selected by a user
via, for example, a user interface (e.g., one of the user inter-
faces 13 of FIG. 1) or may be determined in any other desir-
able manner. Generally, the process state parameter will be
chosen to be a significant disturbance variable, such as the
throughput of the process, an indication of the product grade
or product type being produced by the process, etc. In some
cases, however, the state parameter may be calculated using

10

15

20

25

30

35

40

45

50

55

60

65

18

or determined from two or more process parameters or other
process measurements. For example, the average value of two
process parameters may be used as the state parameter. In
other examples, other statistical techniques may be applied to
calculate a state parameter using any desired inputs from the
process, to determine a state parameter that indicates the state
of process operation at any particular time. The state param-
eter may be a continuous variable or a discrete variable. In one
example, the user is allowed to configure a state parameter
that reflects changes in a major disturbance to process opera-
tion. In some cases this state parameter will be a continuous
parameter such as the production rate or the throughput of the
process. However, in other cases, the state parameter may be
a discrete parameter such as an indication of one of a limited
set of discrete product grades being made. In general the user
may select a single measured or calculated process parameter
as the state parameter, may indicate if this state parameter is
a continuous or discrete parameter, and may specify the num-
ber of states or stages that will be used in data analytics. By
default, for example, the selected parameter may be assumed
to be a continuous parameter and the number of states may be
assumed to be a fixed number, such as five.

At a block 216, the technique 200 determines ranges or
values of the state parameter that define each of the different
process states or stages. The block 216 may also determine
the number of process states to be used in generating quality
prediction and fault detection models if this variable has not
already been set. As indicated above, the ranges of the state
parameter associated with each of the different process states
may be selected or specified by a user such as an operator, a
process engineer, etc. These ranges may indicate different
values of the state parameter (in the case in which the state
parameter is a discrete variable) or different ranges of values
of'the state parameter (in the case in which the state parameter
is a continuous variable) associated with each of the process
states. As an example only, the state parameter may be broken
down into, for example, 5 to 10 different ranges. If desired,
the block 216 may automatically determine process states
ranges associated with the state variable by determining the
overall range of the state parameter from the training data and
then splitting this range into a set of ranges, such as a set of
equal ranges.

When a complete set of training data has been collected and
stored for the process and the state parameter and its associ-
ated ranges or values have been defined to thereby define the
process states, the training data is used to develop one or more
quality prediction models and/or fault detection models to be
used analyze future on-line operation of the process. The
technique of generating quality prediction models is slightly
different than the technique of generating fault detection
models, and so these two techniques are illustrated separately
in FIG. 3 using two different branches.

Generally speaking, a branch 220 of FIG. 3 illustrates the
steps used to develop quality prediction models, such as PLS
models, NN models and MLR models, while a branch 222
illustrates the steps used to develop fault detection models,
such as PCA models. When developing a quality prediction
model, ablock 224 determines time shifts for the training data
for the different process parameters, including the state
parameter, representing a manner of time shifting these
parameters with respect to one another or with respect to the
quality parameter, to align the process parameter data in a
manner that is best aligned in time with the quality parameter
data. This time alignment provides for a prediction model that
performs better predictions.

In particular, during the development of quality prediction
models (e.g., the NN, MLR, and PLS models) for each of the

US 9,110,452 B2

19

quality parameters to be predicted, the deviation values used
to produce the model are shifted in time to account for the
time required for a change in an input to a process model (i.e.,
achange in one of the process parameter values) to impact the
quality parameter being predicted by the model. As will be
understood, this delay may be, and usually is, different for
each of the process parameters being used as inputs to the
quality prediction model. (Similarly, these same delays will
be taken into account in the processing of the deviation values
used for on-line quality parameter prediction.)

One manner of identifying the delay associated with each
process parameter performs a cross correlation between each
of the process parameters and the quality parameter to be
predicted. In this case, for the selected data set that includes
all process inputs (including the state parameter), the block
224 may perform a cross correlation between each process
parameter used to produce an input to the model being devel-
oped and the process output that reflects or is best correlated
with the quality parameter being predicted (which may be
obtained using, for example, on-line measurements, oft-line
lab analyses, etc.) The results of the cross correlation may be
used to establish the time delay to be associated with a par-
ticular process parameter (an input to the model) by deter-
mining the time shift that results in the maximum correlation
value when performing cross correlation between the quality
parameter and the particular process parameter. Of course,
each different process parameter may have a different time
shift associated therewith. Generally speaking, using this
technique, the block 224 determines the highest cross corre-
lation value between a particular quality measure and each
process parameter for each of the different process param-
eters, and then determines a time-shift for that process param-
eter based on the time delay at which the highest cross cor-
relation value is obtained.

One example of a manner in which cross correlation may
beused to determine time shifts to be used to develop a quality
prediction model is illustrated in a situation in which a Kappa
number associated with the output of a Kamyr digester is
predicted based on process inputs. In this example, a chip
meter speed is selected as a state parameter because it sets the
process throughput. The Kappa number of the product output
may be measured using a sampled analyzer or by analyzing a
grab sample in the lab. The delay associated with each process
input being reflected in the Kappa number is automatically
determined by performing a cross correlation between the
process inputs and Kappa number contained in a selected data
set. The results of such a cross correlation determination for
each of the inputs of the digester, labeled Cold Blow, Outlet,
Main Blow, Chip Meter and Lower Ext, are displayed in FIG.
4.

Now, by selecting a process input, a user may see the cross
correlation between the process input and the Kappa number.
FIG. 5 illustrates the cross correlation between the state
parameter, chip meter speed, and the analysis of Kappa num-
ber in more detail. As illustrated in the plot of FIG. 5, the delay
associated with a process input is establish based on the time
shift that provides maximum correlation. In this simulation of
a Kamyr digester, the delay between the chip meter speed
changing and this change being reflected in the Kappa num-
ber is 175 seconds. Of course, an actual process the delay
could be much longer. Delays or time shifts for each of the
other input parameters could be determined in a similar man-
ner and these delays can then be used as the time shift
amounts in the block 224 of FIG. 3.

After all of the process parameter and state parameter time
shifts have been determined, a block 226 uses the time shifts
determined in the block 224 to time shift the process param-

10

15

20

25

30

35

40

45

50

55

60

65

20

eter data for each process parameter input to the model and
the state parameter, and stores this time shifted parameter data
in a memory. In particular, the block 226 stores sets of time
shifted data slices, wherein each time shifted data slice has a
value for each of the process parameters to be used to generate
the model, a value of the state parameter and a value of the
quality parameter. The measurements of the process param-
eters and the state parameter of a particular data slice are time
shifted with respect to measurement of the quality parameter
by the time shift amounts determined at the block 224. The
resulting time shifted parameter data for the different process
parameters and the state parameter of each time shifted data
slice appear to be time coincidental. That is, a change in a
process parameter input is immediately reflected in the qual-
ity parameter in each time shifted data slice.

Next a block 228 uses the time shifted data developed by
the block 226 to calculate the average values for each process
parameter (including the state parameter) and the average
value for the quality parameter while in each of the defined
process states. More particularly, the block 228 culls through
all of the time shifted data slices and uses the value of the state
parameter in each data slice to determine which particular
process state each data slice falls within based on the process
state ranges of the state parameter. The block 228 then aver-
ages all the values of each process parameter, the state param-
eter and the quality parameter of all of the data slices in a
particular process state to determine a separate mean value for
each process parameter, for the state parameter and for the
quality parameter for the particular process state. These
means are referred to herein as the process state means.

A block 230 then stores these average or mean values of the
process parameters, the state parameter and the quality
parameter for each process state in a memory for later use in
developing the quality prediction model, as well as in using
the quality prediction model once developed.

Thereafter, for each data slice (also called a time slice), a
block 232 uses the time shifted data of that time slice and the
process state means to determine a set of means to use when
determining a set of deviations from the mean for that time
slice. In particular, the block 232 selects a time slice of data to
process to determine a set of means to use for that time slice
to thereafter determine the deviations from the mean for that
time slice, with the deviations from the mean being inputs to
a model generation routine to be used in developing the
quality prediction model. More particularly, for each time
slice, the block 232 uses the instantaneous value of the state
parameter indicated by (stored for) that time slice and the
mean values of the state parameter determined for one or
more of the process states to determine a scaling factor (e.g.,
an interpolation factor) to use to determine the appropriate
mean values for each of the other process parameters of the
time slice.

In the case in which the state parameter is a discrete vari-
ablethat is directly correlated with the process states (i.e., one
different value of the state parameter is associated with or
defined for each different process state), then the value of the
state parameter defines or uniquely determines the process
state in which the process is operating (for that time slice) and
the means of the process parameters for that time slice are
simply determined as the process parameter means stored for
that process state. However, if the state parameter is a con-
tinuous variable or the user has defined a range of values of
the state parameter to be associated with each of the process
states (i.e., a range of state parameter values is defined for
each process state), then the block 232 determines an inter-
polation factor defining a fraction of two states in which the
instantaneous value of the state parameter (of the time slice)

US 9,110,452 B2

21

currently lies. That is, if the instantaneous value of the state
parameter is equal to the mean value of the state parameter for
a particular process state, the time slice is squarely within a
single process state and the process parameter means stored
for that process state can be used as the means for the other
process parameters of that time slice.

However, if the instantaneous value of the state parameter
falls between the state parameter means of two different (e.g.,
two adjacent) process states, then the means for the other
process parameters of the time slice will be determined as a
combination of the process parameter means stored for those
two process states. Typically, the mean for each process
parameter to use for the time slice will be determined by
interpolating between the parameter means for that parameter
of'the two adjacent process states using an interpolation factor
developed from the instantaneous state parameter value. That
is, an interpolation routine may determine the percentage of
each of the two process states in which the time slice exists
based on the relative distance of the instantaneous value of the
state parameter (of the time slice) and the two nearest mean
values of the state parameter (from two different process
states). The block 232 can perform the interpolation (using
the same interpolation factor) for each of the process param-
eters in the time slice using the stored process parameter
means for the two adjacent process states. As a result of this
operation, the block 232 determines the appropriate mean
value to use (for each process parameter of the time slice) in
calculating the deviations from the mean for that time slice to
be used to create a process model. The block 232 will perform
this interpolation for the quality parameter of the time slice as
well. Thus, for each process parameter and the quality param-
eter of a time slice, the block 232 will use the determined
fraction within state and the state means of two adjacent
process states to determine the mean value of the process
parameters for the time slice.

One example of performing interpolation to determine a
set of time slice means for a particular time slice will now be
described in more detail. In this example, it is assumed that
the range of variation of the state parameter is calculated from
the training data to determine the entire operating range for
the state parameter. By default this operating range is auto-
matically divided into a number of equal segments that rep-
resent the different states of the process considered in analy-
sis. In another case, the user could specify the entire range of
the state parameter, the number of process states or stages,
and the particular sub-ranges of the state parameter associ-
ated with each of the process states. In any event, in this
example, the average value of the state parameter for each
process measurement during each of the defined process
states or stages is determined and saved in memory. In this
example, which relates to operation of a boiler process, the
boiler steam demand is configured as the state parameter, and

10

15

20

25

30

35

40

45

50

22

lected for other inputs, e.g., five parameter inputs of Fuel
Flow, Air Flow, O2, Draft, and IS Fan Speed, included in the
model appear as illustrated in Table 1 below.

TABLE 1
State - Steam Demand 1 2 3 4 5
State Range 25-35 3545 45-55 55-65 65-75
No. Sample in Range 210 340 150 85 30
Steam Demand - Ave 30 40 50 60 70
Fuel Flow - Ave 30 40 50 60 70
Air Flow - Ave 35 45 55 65 75
02 - Ave 2.5 2.5 2.5 2.5 2.5
Draft - Ave -1 -1 -1 -1 -1
IS Fan Speed - Ave 20 28 38 50 65

In this example, to determine the time slice means to be
used to determine deviations from the mean for a time slice,
the following procedure may be used. If the instantaneous
value of the state parameter of the time slice is equal to the
state parameter mean for a process state, then the state param-
eter means for the other process parameters of that process
state will be used as the time slice mean values in calculating
the parameter deviations from mean for that time slice. How-
ever, in most cases the state parameter value of a time slice
will fall between the state parameter mean values for two
process states. In this case, the state parameter mean values
for these two process states will be used in conjunction with
the process parameter mean values for these two process
states to calculate the time slice parameter mean values. For
the boiler example described above, if the state parameter
value was 37 for one time slice, then, based on the state
parameter mean values saved for the process states, the mean
value for the air flow parameter could be determined for that
time slice using standard interpolation techniques as follows:

37-30

Air Flow Mean = (m

]x(45—35)+35:42

When the state parameter is product grade (a discrete
parameter with enumerated values, e.g. 1-5), then, during
model development, the parameter mean value for each state
can be calculated for the data samples that coincide with the
state parameter being in that state. For example, the mean
values that were established for a continuous reactor might
appear as shown below in Table 2.

TABLE 2

State 1 2 3 4 5
Grade Description ADX201 ADX210 ADX215 ADX230 ADX240
Sample in State 210 340 150 85 30
Primary Flow - Mean 70 20 60 80 75
Secondary Flow - Mean 25 35 30 45 50
Product Concentration - Mean 35 40 30 45 42
Reactor Temp - Mean 210 215 205 211 200
Cooler Out Temp - Mean 180 185 174 200 190
Reactor Press - Mean 10 10 10 10 10

this variable is assumed to have varied over a range of 25-75%
in the data set selected for model building. The values col-

65

If the state parameter value was 3 (ADX215), then the
mean value for primary flow would be 60. If the state param-

US 9,110,452 B2

23

eter value changed to 1(ADX201) then the mean value for
primary flow would be 70. Any changes in state will not be
immediately reflected in the process parameters.

After the mean values for each time slice (referred to a slice
means) are determined, a block 234 uses the calculated time
slice means to calculate a deviation from the mean for each of
the process parameters and the quality parameter within the
time slice. In particular, the block 234 will determine the
difference between each process parameter value (and quality
parameter value) of the time slice and its associated time slice
mean (as determined in the block 232) to produce a set of
deviations from the mean, with one deviation from the mean
being determined for each process parameter (except the state
parameter) and quality parameter in the time slice. The devia-
tions from the mean for each time slice may then be stored in
a memory.

A block 235 next filters each string of deviations from the
mean separately. This filtering process makes the process
model being generated more robust, and helps to prevent the
model from detecting quality problems when the process is
simply moving between states. The block 235 may imple-
ment a low pass filter for each process parameter, the state
parameter and the quality parameter. The low pass filters may
use a filter time constant is set equal to or greater than the
longest response time of the quality parameter to a change in
any of the process parameters used as inputs to the model
being constructed. Of course, other filter time constants could
be use as well and these time constants could be selected
based onresponse times that are less than the longest response
time of the quality parameter.

As one example of filtering, a first order filter can be
applied based on the configured transition time of the process
(in seconds). For example, the Air Flow deviation from the
mean of the example of Table 1 above could be calculated as:

Air Flow Dev,,=Fx((Air Flow,—Air Flow Mean,)-Air
Flow Dev,,_;)+Air Flow Dev,_;

Where the filtering factor F is:

. AT
TAT+T

and where
AT=Period of Execution (sec)
t=Transition Time (sec)

The filtered deviations from the mean are then provided to
ablock 236, which uses the filtered deviations from the means
to determine or to generate the process model, e.g., the NN,
MLR, and/or PLS model, to be used in later quality prediction
operations. Any desired technique for creating these models
may be used and these techniques are well known. Thus, the
method of generating models from the deviations from the
mean will not be described in detail herein. However, as part
of the process model generation, the determined process
parameter means (including the state parameter means) and
the quality parameter means determined for each of the pro-
cess states (i.e., the process state means) as well as the state
parameter ranges for each process state are stored as part of
the process model and will be used when using the process
model to perform quality prediction in an on-line process.
Additionally, the filter time constants and the time shift values
may be stored as part of the process model.

A method of creating a fault detection model will now be
described with reference to the branch 222 of FIG. 3. Gener-
ally speaking, the technique of creating a fault detection
model illustrated in the branch 222 is similar to the technique

10

15

20

25

30

35

40

45

50

55

60

65

24

of creating a quality prediction model in many respects. How-
ever, the fault detection model will be developed from train-
ing data that has not been time shifted or time aligned, as this
model will be used to make a future fault prediction (instead
of a prediction of the process quality at any particular time).
In all other respects, the training data is processed in the
branch 222 very similarly to the manner in which the time
aligned data slices are processed in the branch 220.

Thus, a block 248 uses the training data collected for the
process and calculates the average or mean values for each
process parameter (including the state parameter) and the
average value for the quality parameter for each ofthe defined
process states. Because the block 248 is operating on time
slices of the raw training data instead of the time aligned data,
the means calculated in the block 248 may be different than
the means calculated in the block 228. A block 250 then stores
these average or mean values of the process parameters and
the quality parameter in a memory as process state means for
later use in developing the fault detection model as well for
use in performing fault detection once the model is devel-
oped.

Thereafter for each time slice of training data, a block 252
uses the parameter data of that time slice and the process state
means to determine a set of time slice means to use when
determining deviations from the mean for that time slice. In
particular, the block 252 selects a time slice of data to process
to determine a set of means to use for that time slice to
thereafter determine the deviations from the means for that
time slice, with the deviations from the means being inputs to
a model generation routine to be used in developing the fault
detection model. More particularly, for each time slice, the
block 252 uses the instantaneous value of the state parameter
indicated by (stored for) that time slice and the process state
mean values stored for the process states to determine a
scaling factor (e.g., an interpolation factor) to use to deter-
mine the appropriate time slice mean values for each of the
other process parameters of the time slice. This process is
similar to that described for the block 232 and so will not be
repeated here. In any event, the block 252 performs interpo-
lation (using the same interpolation factor) for each of the
process parameters in the time slice using the process state
means for the process parameter from two adjacent process
states to determine the appropriate time slice mean value to
use in determining the deviation from the mean to be used to
create a fault detection model from that time slice of data. The
block 252 performs this interpolation for the quality param-
eter of the time slice as well.

After the time slice mean values for each data time slice, a
block 254 uses the calculated time slice means to determine a
deviation from the mean for each of the process parameters
and the quality parameter within the time slice. In particular,
the block 254 determines the difference between each process
parameter (and quality parameter) of the time slice and its
associated time slice mean (as determined in the block 252) to
produce a set of deviations from the mean, with one deviation
from the mean being determined for each process parameter
(except the state parameter) and quality parameter of the time
slice.

A block 255 then filters the deviations from the means to
make the process model being generated more robust and to
help prevent the model from detecting faults when the process
is moving between process states. The block 235 may imple-
ment a low pass filter in which the filter time constant is set
equal to or greater than the longest response time of the
quality parameter to a change in any of the process parameters
used as inputs to the model being constructed. Thus, in one
example, to account for the time required for the process to

US 9,110,452 B2

25

respond to a state change, the deviations from mean can be
filtered based on the transition time for the fault being
detected. Of course, other filter time constants could be use as
well, and these time constants could be selected based on
response times that are less than the longest response time.

The filtered deviations from the means are then provided to
ablock 256 which uses the filtered deviations from the means
to determine or to generate the fault detection model, e.g., a
PCA model, to be used in later fault detection operations.
Again, the process of creating a PCA model from a set of
deviations from the mean for a set of parameters is well
known and so will not be described herein in detail. However,
as part of the process model generation, the determined pro-
cess parameter means (including the state parameter means)
and the quality parameter means determined for each of the
process states (i.e., the process state means) as well as the
state parameter ranges for each process state are stored as part
of'the process model and will be used when using the process
model to perform fault detection in an on-line process. Addi-
tionally, the filter time constants may be stored as part of the
process model.

FIG. 6A illustrates a system for implementing the process
quality prediction model generation technique 200 of FIG. 3.
In particular, as illustrated in FIG. 6 A, the process 300 oper-
ates in a training phase to generate process data in the form of
process parameter data (including state parameter data) and
quality parameter data for a significant number of times or
samples. The process parameter data, indicated by the lines
302 of FIG. 6A, includes process parameter, state parameter
and quality parameter data, e.g., process variable values, state
variable values and quality variable values, that are measured
or output by devices within the process 300 or that are other-
wise collected from the process 300 during operation of the
process 300. The process parameter data 302 is obtained and
stored in a memory 304 as a set of training data. The memory
304 may be, for example, the data historian 12 of FIG. 1 orany
other desired memory. Of course, data for any number of
process parameters, quality parameters (including fault indi-
cations) and state parameters may be measured, collected and
stored as part of the training data in the memory 304.

Next, a time shift calculation block 306 operates on the
training data obtained from the memory 304 using the iden-
tity of the state parameter and the ranges of the state param-
eter values defining the different process states, the identity of
the process parameters to be used as inputs for a model and
the quality parameter to be estimated by the model. The block
306 may receive these indications from a user via a user
interface 305, for example. The block 306 uses the indication
of'the quality parameter and the process parameters to be used
in the model being constructed, and performs the cross cor-
relation technique described above to determine the appro-
priate time shifts for each of the process parameters. Of
course, the block 306 may perform the cross correlations
automatically and automatically determine the appropriate
time shift for each process parameter, or may receive input
from a user via the user interface 305, which may enable a
user to view and select the appropriate delay times for each of
the process parameters.

After the time shifts have been calculated for each of the
process parameters (and the state parameter), a time shift
block or delay unit 308 receives the training data, and delays
the various process parameter values of the different process
parameters to be used in the model being constructed by the
appropriate amounts and then stores the time aligned param-
eter data in a memory 310 as time aligned data slices. Each
time aligned data slice will have a value for each process
parameter used as inputs to the model being constructed, a

10

15

20

25

30

35

40

45

50

55

60

65

26

value for the state parameter and an associated value for the
quality indication being predicted by the model to be con-
structed, with the values of the process parameters and the
state parameter being shifted in time (e.g., advanced or
delayed in time) relative to the value of the quality parameter,
based on the time shifts applied by the block 308.

As aresult, the memory 310 will store time slices of data
having values of the process parameters, the quality param-
eter and the state parameter time aligned such that time delays
between the changes in the process parameters and the result-
ing changes in the quality parameter are reduced to the best
extent possible. These sets of data slices are the best to use in
generating the model to produce the most accurate quality
prediction model.

Next, a block 312 analyzes the time slice data from the
memory 310 and develops a set of process parameter and
quality parameter means for each defined process state. The
process parameter means for each particular process state will
include, for each process parameter, the mean of the values of
that process parameter from all of the time slices for which the
state parameter value of the time slices falls with the particu-
lar process state. Likewise, the quality parameter mean for
each particular process state will include, for the quality
parameter, the mean of the values of the quality parameter for
all of the time slices for which the state parameter value of the
time slice falls with the particular process state. Similarly, the
state parameter mean for each particular process state will
include, for the state parameter, the mean of the values of the
state parameter in all of the time slices for which the state
parameter value of the time slice falls with the particular
process state.

When the process state means have been determined for
each process state from the entire set of time slices stored in
the memory 310 (i.e., for the time aligned training data), a
block 314 determines the process parameter and quality
parameter means to use for each time slice (the time slice
means) in determining a set of deviations from the mean for
that time slice. As noted with respect to FIG. 3, the block 314
may use interpolation based on the instantaneous value of the
state parameter for a time slice to determine the manner in
which to interpolate between the process parameter means of
two adjacent process states for each process parameter and
the quality parameter in the time slice.

When the means for each time slice have been determined,
these time slice means are provided to and used in a block
316, along with the aligned time slice data from the memory
310, to determine a deviation from the mean for each process
parameter and the quality parameter of each time slice. The
sets of deviations from the mean (one set of deviations from
the mean being created for each aligned time slice) are then
provided to a filter block 318 which filters the deviations from
the means on a process parameter by process parameter basis
to account for situations in which the process is changing
from one state to another. Generally speaking the deviations
from the mean may be filtered using a low pass filter with a
time constant set based on the amount of time it takes the
quality parameter to respond to changes in the process param-
eters. In one case, the longest response time may be used to set
the filter constant. The filter constant will generally be the
same for all of the deviations from the mean. Additionally, if
desired, the filter time constant may be selected or specified
by a user via, for example, the user interface 305.

The filtered deviations from the means are then provided to
a model generation bock 318 which uses these values to
produce a quality prediction model using standard model
creation techniques. As indicated in FIG. 6 A, the model gen-
eration block 320 creates one or more of a PLS model 322, a

US 9,110,452 B2

27
NN model 324 and an MLR model 326. Generally speaking,
a single model will be created for each quality variable being
predicted and these models may, of course, have different
process parameter inputs. The model generation block 320
may store the model along with one or more of the process
state means, the definitions of the process states (e.g., the
ranges of the state parameter that define the various process
states), the filter time constants, and the time shift values for
each of the process parameters as part of the process model.

FIG. 6B illustrates a system for developing a fault detection
model and includes the process 300, the training data memory
304, and the user interface 305 illustrated in FIG. 6 A. How-
ever, in this case, a block 412 analyzes the time slice data of
the raw training data in the memory 304 to develop a set of
process parameter and quality parameter means for each
defined process state. The process parameter means for each
particular process state will include, for each process param-
eter, the mean of the values of the process parameter in all of
the time slices for which the state parameter value of the time
slices falls within the particular process state range. Likewise,
the quality parameter mean for each particular process state
will include, for the quality parameter, the mean of the values
of the quality parameter in all time slices in which the state
parameter falls within the process state. Similarly, the state
parameter mean for each particular process state will include,
for the state parameter, the mean of the values of the state
parameter in all of the time slices for which the state param-
eter value of the time slice falls with the particular process
state.

When the process state means have been determined for
each process state from the entire set of time slices stored in
the memory 304 (i.e., for the time slices of the training data),
a block 414 determines the process parameter and quality
parameter means to use for each time slice (the time slice
means) in determining a set of deviations from the mean for
that time slice. As noted with respect to FIG. 3, the block 414
may use interpolation based on the instantaneous value of the
state parameter for a time slice to determine the manner in
which to interpolate between the process parameter means of
two adjacent process states for each process parameter and
the quality parameter in the time slice.

When the time slice means for each time slice have been
determined, these means are provided to and used in a block
416, along with the time slice data from the training data
memory 304, to determine a deviation from the mean for each
process parameter and the quality parameter of each time
slice. The sets of deviations from the mean (one set of devia-
tions from the mean being created for each time slice) are then
provided to filter block 418 which filters the deviations from
the mean to account for situations in which the process is
changing from one state to another. Generally speaking the
deviations from the mean may be filtered using a low pass
filter with a time constant set based on the amount of time it
takes the quality parameter to respond to changes in the
process parameters. If desired, the filter time constant may be
selected or specified by a user via, for example, the user
interface 305 and may be the same filter time constant used in
the filter block 318 of FIG. 6A.

The filtered deviations from the means are then provided to
a model generation bock 420 which uses these values to
produce a fault detection model using standard model cre-
ation techniques. As indicated in FIG. 6B, the model genera-
tion block 420 may create one or more PCA models 422.
Generally speaking, a single PCA model will be created for
each fault being detected and these models may, of course,
have different process parameter inputs.

25

30

35

40

45

55

28

Of course, other types of quality prediction and fault detec-
tion models may be used and the model generation routines
314 and 414 may generate the PLS, NN, MLR and PCA
models in any desired or known manner, as is typical. How-
ever, as will be understood, the quality prediction and fault
detection models are preferably generated from the entire set
of training data which, if possible, includes data associated
with the operation of the process 300 over all of the predefined
process state ranges. In any event, a single PLS model, NN
model, MLR model or PCA model may be developed for the
process 300 for performing each quality prediction and fault
detection without individual models needing to be developed
for each of the predefined process states. As will be under-
stood, the PLS, NN, MLR and PCA models will be generated
as typical models created for the process 300 according to
standard model generation techniques, except that these mod-
els will also include a set of process state means associated
with each of a different set of process states, as well as
definitions of the state parameter and state parameter ranges
defining various process states. In this case, each set of pro-
cess state means will include a mean for each of the process
variables and the state variable for which data is collected
and, in quality prediction models, a mean for the quality
parameter.

FIG. 7 depicts a flow chart illustrating a method 500 of
using one of the quality prediction or fault detection models
created using the method of FIG. 3 to perform on-line analy-
sis of the operation of a process, such as the process 300 of
FIGS. 6A and 6B. In particular, a block 502 collects and
stores process parameter and state parameter data from the
process. (Of course, quality parameter data and fault data may
also be collected, but this action is not strictly necessary for
performing data analytics of the process using the models
created by the technique of FIG. 3). The collected process
parameter and state parameter data could be obtained on-line
from the process in real time, could be obtained via lab or
off-line analyses, could be obtained via user input or could be
obtained in any other desired manner.

Next, if the model being used is a quality prediction model,
such as a PLS, NN or MR model, a block 504 time shifts the
process parameters and the state parameters, using the time
shift amounts determined by the block 224 of FIG. 3. These
time shift amounts may be stored as part of the model and may
be obtained from the model if so desired. Thus, these time
shift amounts are generally the same time shift amounts used
to shift the data to produce the time aligned data slices used to
produce the model. The block 504 is illustrated in dotted line
because this block will not be performed if the model being
used is a fault detection model, such as a PCA model.

In either case, ablock 506 produces a set of data slices from
the collected data and may store these data slices in memory,
if so desired. If the model being used is a quality prediction
model, these data slices are time shifted data slices because
the process parameter and state parameter data within these
data slices are shifted in time with respect to one another.
However, if the model being used is a fault detection model,
then the data slices are produced directly from the collected
process data without being time shifted with respect to one
another.

A block 508 next processes each of the data slices produced
by the block 506 to determine a set of time slice means for
each of the data slices. In particular, the block 508 uses the
process state means stored as part of the model and the instan-
taneous value of the state parameter within a data slice to
determine a set of time slice means for that data slice. When
the state parameter is a continuous variable, the block 508
may determine an interpolation factor from the instantaneous

US 9,110,452 B2

29

value of'the state parameter based on the distance between the
instantaneous value of the state parameter and the two nearest
process state means, and may then use this interpolation
factor to interpolate between the process state means for the
other process parameters (stored in the model) to determine
time slice means for these other process parameters. If the
state parameter is a discrete variable, the block 508 may
simply determine the set of process state means to use based
on the instantaneous value of the state parameter within the
time slice. The block 508 may store the time slice means in a
memory.

A block 509 then uses the time slice means and the instan-
taneous values of process parameter of the time slice to deter-
mine a set of deviations from the means for the data slice. In
particular, the block 509 determines a difference between the
instantaneous value of each of the process parameters of a
time slice and its respective mean to produce a set of devia-
tions from the mean for the time slice. Of course, the blocks
508 and 509 operate on each data slice to produce a continu-
ous stream of deviations from the mean as the process that is
being analyzed is operated on-line.

Next, a block 510 filters each stream of deviations from the
mean (i.e., with one stream being created for each process
parameter used as an input to the model) and provides the
filtered deviations from the means to the model to be pro-
cessed. The block 510 may use the same type of filtering
technique used when creating the model and thus may use the
same filter coefficients as used in the method of FIG. 3 to filter
the deviations from the means used to produce the model in
the first place. These filter coefficients may be stored as part of
the model and thus may be obtained from the model itself.

A block 512 operates the model using the filtered devia-
tions from the means to produce model outputs in the form of,
for example, quality measurement predictions, fault detec-
tions, etc. A block 514 may operate on the output of the model
to produce alarms or alerts to be displayed or otherwise pro-
vided to a user. In particular, the block 514 may compare the
output of the model to one or more preset or pre-established
thresholds to detect an output of the model that is above or
below a threshold, and then set an alarm or an alert based on
this comparison. Of course, other types of alarming may be
performed on the output of the model as well or instead.

FIG. 8 illustrates a system that may use the method of FIG.
7 to perform on-line data analytics for a process, such as the
process 300 of FIGS. 6A and 6B, using a model 601 that was
previously created for analyzing the process 300. In particu-
lar, as illustrated in FIG. 7, the process 300 operates to pro-
duce process parameter and state parameter data which is
measured or collected in any desired manner and may be
stored in a memory 602. In the case in which the quality
prediction is being performed, a time shifting module 604
time shifts the process parameters and the state parameters,
using the time shift amounts stored as part of the process
model (as is indicated by the lines from the model 601 of F1G.
7). These time shift amounts are generally the same time shift
amounts used to shift the data to produce the time aligned data
slices used to produce the model. The time shifting module
604 may store the time shifted or time aligned data as time
aligned data slices ina memory 606. If the model 601 is a fault
detection model, then the time shifting module 604 is not
needed or used.

In either case, a mean calculating module 608 processes
each of the time aligned data slices stored in the memory 606
(in the case of a quality prediction system) or data slices
collected from the process itself and stored in the memory 602
(in the case of a fault detection analytics system) to determine
a set of time slice means for each of the data slices. In par-

30

40

45

50

55

30

ticular, the module 608 uses the process state means stored as
part of the model 601 and the instantaneous value of the state
parameter within a data slice to determine a set of time slice
means for that data slice. When the state parameter is a con-
tinuous variable, the module 608 may determine an interpo-
lation factor from the instantaneous value of the state param-
eter based on the distance between the instantaneous value of
the state parameter and the two nearest process state means,
and may then use this interpolation factor to interpolate
between the process state means for the other process param-
eters (stored in the model 601) to determine time slice means
for these other process parameters. If the state parameter is a
discrete variable, the module 608 may simply determine the
set of process state means to use based on the instantaneous
value of the state parameter within the time slice. The module
608 may store the time slice means in a memory associated
therewith.

A deviation module 609 then uses the time slice means and
the instantaneous values of process parameter of the time
slice to determine a set of deviations from the means for the
data slice. In particular, the block 609 determines a difference
between the instantaneous value of each of the process
parameters of a time slice and their respective mean to pro-
duce a set of deviations from the mean for the time slice. Of
course, the modules 608 and 609 operate on each data slice to
produce a continuous stream of deviations from the mean as
the process that is being analyzed is operated on-line.

Next, a filter module 610 filters each stream of deviations
from the mean (i.e., with one stream being created for each
process parameter used as an input to the model) and provides
the filtered deviations from the means to the model to be
processed. The filter 610 may use the same type of filtering
technique used when creating the model 601 and thus may use
the same filter coefficients as used in the method of FIG. 3 to
filter the deviations from the means used to produce the model
601 in the first place. These filter coefficients may be stored as
part of the model 601 and thus may be obtained from the
model 601 itself.

The model 601 then operates or is implemented using the
filtered deviations from the means and produces model out-
puts in the form of, for example, quality measurement pre-
dictions, fault detections, etc. An alarm module 614 may
operate on the output of the model 601 to produce alarms or
alerts to be displayed or otherwise provided to a user. In
particular, the alarm module 614 may compare the output of
the model 601 to one or more preset or pre-established thresh-
olds to detect an output of the model 601 that is above or
below a threshold, and then set an alarm or an alert based on
this comparison. Of course, other types of alarming may be
performed on the output of the model as well or instead.

FIG. 9 illustrates a block diagram of a function block 700
that may be implemented to perform the quality prediction
and/or fault detection using a set of statistical process models
created using the techniques described herein. If desired, the
function block 700 may be executed or implemented in a user
interface, in a process controller within a control system or
even within a field device located in a process control system,
such as in any of the process control systems of FIGS. 1 and
2. The function block 700, referred to herein as a data analyt-
ics (DA) function block, can be configured to be useable and
viewable by a user in the same or similar manner as other
function blocks within the process control system, to thereby
make the DA function block 700 compatible and easily inte-
grated into the process control system in which it is used to
perform data analytics.

While the function block 700 is illustrated as performing
both quality prediction and fault detection on the same set of

US 9,110,452 B2

31

process input parameters and state parameter, the function
block 700 could instead perform one of quality prediction or
fault detection and need not perform both. Additionally, while
the function block 700 is described as performing a single
type of quality prediction and fault detection based on a set of
input parameters and a state parameter, the block 700 could
include multiple sets of models and could perform multiple
types of quality prediction and fault detection. However, for
ease of use and configuration, it is preferable that a different
function block 700 be created and implemented for each
different type of quality prediction/fault detection desired to
be performed.

The parameters of the DA function block 700 of FIG. 9
may include typical function block parameters and, in addi-
tion, may include a number new parameters and features
described below. Generally speaking, the DA function block
700 includes a modeling block 702 and an alarming block
704, each of which includes a set of inputs and outputs. The
inputs to the modeling block 702 includes a number of pro-
cess parameter and state parameter inputs 706, an algorithm
input 708, a delay input 710, a sample input 712 and a follow
input 714. The process parameter and state parameter inputs
706 are communicatively connected to and receive, from
other function blocks or devices within the process control
system, the measured or otherwise determined values of the
process parameters and the state parameter being used in the
data analytics to perform quality prediction and fault detec-
tion. The algorithm input 708 is an enumerated parameter
indicating the type of modeling algorithm used in the model.
The algorithm input 708 input may specify, for example, that
the function block 700 performs one of MLR, PLS, PLS-DA,
and NN predictive modeling. The sample input 712 receives
a determined quality sample that may be obtained from mea-
surements, such as lab measurements, of the process and the
delay input 710 receives a specified delay indicating the delay
between the current time and the time for which the sample
provided at the sample input 712 was obtained. The sample
input 712 and the delay input 710 may be used to correct bias
errors in the predictions being produced by the function block
700. The follow input 714 is an input that may be used to
cause the output of the quality prediction routine of the func-
tion block 700 to simply follow the sample measurement
provided at the sample input 712.

Generally speaking, the modeling block 702 includes an
interface 720 that receives and stores the process parameter
and state parameter inputs 706 and provides these inputs for
performing quality prediction and fault detection. In particu-
lar, the interface 720 is connected to and provides process
parameter values and state parameter values to a delay block
722 which delays the various inputs by the delay or time shift
amounts provided with or determined for the quality model
when it was created. These delays may be provided from a
memory file 724 which stores the process parameter time
shifts as well as the other model parameters including the
model process state means, filtering coefficients, and model
parameters or model coefficients use to implement the model.

A quality prediction modeling block 726 then uses the
delayed or time aligned data slices produced by the delay
block 722, the measured parameter values from the interface
720, the process state means, the filter coefficients, and the
model coefficients (all from the model file 724) to perform
quality prediction in the manner described above with respect
to FIGS. 7 and 8. The quality prediction modeling block 726
may produce a future prediction (at a time horizon) which is
provided to an output of the function block 700 labeled
FUTURE and may produce a current prediction which is
provide to an output of the function block 700 labeled as

5

10

15

20

25

30

35

40

45

50

55

60

65

32

OUT. Of course, if desired, the quality prediction modeling
block 726 may be programmed or designed to implement any
of'the different types of models as specified by the algorithm
input 708, using model parameters or model coefficients
stored in and provided by the model file 724.

However, bias correction or compensation may be per-
formed on both of the prediction values provided to the
FUTURE and OUT outputs of the function block 700. In
particular, a delay unit 730 delays the predicted quality output
by the delay amount specified at the delay input 710 and a
summing block 732 determines a difference between the
delayed predicted current output of the quality prediction
modeling block 726 and the sample measurement provided at
the sample input 712. A limit block 734 limits this difference
using a correction limit input (which may be specified by a
user or function block designer for example) and a filter 735
then filters the output of the limit block 732 using a correction
filter coefficient or parameter (which may also be specified or
provided by a user or function block designer for example).
The output of the filter 735 is a bias correction which is
provided to a bias enable switch 736 which may be turned on
and off by a user or other automatic input generated in the
process control system. If the bias enable switch 736 is on or
enabled, summer blocks 740 and 742 add the bias correction
to the current prediction and the future prediction values
produced by the quality prediction modeling block 726.

A switch 744, which is operated or controlled by the follow
input 714, switches between connecting the bias corrected
current output of the block 726 or the sample value provided
at the sample input 712 to the OUT output of the function
block 700. The follow input 714 thus causes the OUT output
of the function block 700 to follow the sample value being
provided at the sample input 712. Moreover, a mode switch
746, which is controlled by a mode signal, controls whether
any output is provided at the OUT output of the function
block 700. The mode switch 746 may be used to disable the
current quality output prediction of the function block 700
based on the mode of the function block 700 or some other
function block that might be using the output of the function
block 700. Thus, the mode switch 746 enables the output of
the function block 700 to be disabled or disconnected when
the portion of the process control system pertaining to or
being modeled by the function block 700 is, for example, in
an out of service mode, an abnormal mode, a manual mode,
etc.

Still further, a fault detection block 750 is connected to the
interface 702 and receives the process parameter and state
parameter inputs and uses these, as well as the state means and
other model information from the model file 724 to perform
fault detection in the manner described above with respect to
FIGS. 7 and 8. The output of the block 750 includes a Block
error output, a Stat_T2 output and a Stat_Q output. The Block
error output is the error or fault detection output being mod-
eled or determined by the fault detection block 750 and is a
typical PCA model output when used for fault detection. The
Stat-T2 parameter is a read-only, floating point number show-
ing the T? statistic of the PCA model used in fault detection.
The Stat_Q is a read-only, floating point number showing the
Q statistic of the PCA model used in fault detection. The
Stat_T2 output and Stat_Q statistics are typically produced
by predictive models such as PCA models and are commonly
used for predictive alarming. Of course, if desired, the fault
detection modeling block 750 may be programmed or
designed to implement any of the different types of models
using model parameters or model coefficients stored in and
provided by the model file 724.

US 9,110,452 B2

33

In any event, as illustrated in FIG. 9, the Block error, the
Stat_T2 and the Q statistics are provided to the alarming
block 704 along with the current quality prediction value
(which may have bias correction applied thereto). The alarm-
ing block 704 also receives as input parameters, a T2_IL.IM,
which is an upper alarm limit for the calculated T2 statistic of
the fault detection block 750, a Q_LIM, which is an upper
alarm limit for the calculated Q statistic, a LO_LIM, which
specifies the low alarm limit on the quality prediction (which
may be set to the product specification low limit if desired)
and a HI_LIM, which specifies the high alarm limit on the
quality prediction (and which may be set to the product speci-
fication high limit).

Still further, a PRED_ACT output of the alarming block
704 is used to trigger the alarming on quality prediction and a
FAULT_ACT output of the alarming block 704 is used to
trigger the alarming on fault detection. Of course, the alarm-
ing block 704 may determine alarm trigging by comparing
the quality prediction values provided thereto by the quality
prediction modeling block 726 to the LO-LIM and the
HI_LIM values to determine if the quality prediction value
exceeds (is lower than or higher then, respectively) these
limits and may trigger an alarm at the PRED_ACT output if
so. Likewise, the alarming block 704 may determine alarm
trigging by comparing the various outputs, Block error,
Stat_T2 and Stat_Q, of the fault detection modeling block
750 to a fault threshold, the T2_Lim and the Q_Lim, respec-
tively, to determine if any of the fault detection values meets
or exceeds it limit (or the Block error value indicates a fault).
Ifathreshold is met or exceeded, the alarming block 704 may
trigger an alarm at the FAULT_ACT output. Any or all of the
outputs of the alarming block and the predication blocks 726
and 750 may be provided to and stored in a data historian if so
desired, for easy retrieval.

Additionally, if desired, adaptive modeling may be imple-
mented on-line when using the quality prediction and fault
detection models constructed or generated with the modeling
techniques described herein. In particular, there may be cir-
cumstances in which the modeling system, once created,
operates to analyze process conditions that differ signifi-
cantly from the process conditions experienced during the
time that the process training data used for creating the mod-
els in the data analytics system was collected. For example,
the process may undergo or experience a different through-
put, or the process may be used to produce a new product
grade, and thus operate in conditions that were not experi-
enced during the training phase. In one example, the process
may not have experienced or operated in one or more of the
process states that were defined for the process during the step
of collecting training data. In another example, the process
states for the process may have been defined based on the
range of the state parameter during the training runs, but the
process may enter a new and previously undefined process
state as determined by the state parameter. In other situations,
it may be determined that the operation of the process has
changed somewhat due to different ambient conditions, aging
of process equipment or a change in some other disturbance
variable (measured or unmeasured) from when the training
data was collected. In these cases, model adjustment may be
required to improve the operation of the data analytics sys-
tem. Adaptive modeling, as described below, may be used to
compensate for these situations without needing to regenerate
the underlying models themselves.

In particular, it is possible to perform adaptive modeling in
the systems described herein in response to these or other
conditions or situations, without changing the underlying
process model(s) developed during the model generation

30

40

45

34

phases. In particular, model adjustment may be made by
determining a new set of process state means for each of the
process states (either originally defined process state or newly
added process states) from newly collected process measure-
ments, and then storing these new process state means as part
of the model, for the process states for which model adjust-
ment is performed. If desired, standard deviations may also be
calculated and stored for each of the adapted process states.

Thus, generally speaking, model adaptation may be per-
formed by performing adaptation of the mean values (the
process state means) stored in the model for each process
state. Without model adaptation, it is necessary to collect data
that covers the entire operating range of the process states
during model development. Based on the variation seen in the
data for each measurement, the operating range can be
divided into a selectable number of states (e.g., five). How-
ever, with model adaptation, the process data used in the
training phase does not have to cover the full operating range
of'the process because, as the process moves into a different
process state, the modeling system can collect process data
for each of the state parameter and process parameters for a
period of time while the process is in that new or changed
process state, and thereafter the modeling system can auto-
matically calculate the mean value for each of the process
parameters and the state parameter while the process is in that
new or changed process state. These means values can be
saved in the model (to thereby adapt the model) for use in
modeling the process while the process operates in that pro-
cess state in the future.

For example, if the flow rate that dictates the process
throughput is selected as the state parameter, data for the
process parameter measurements could be initially collected
and used in model development even though the state param-
eter only varied over a small operating region of flow rate. For
this case, the user would identify the range over which the
state parameter normally operates. Here, while processing the
data during the model build, the data that was collected may
only fall into a few of the possible states (based on the user
input of the state range). For the process states for which
process parameter data is collected, the model generation
routine calculates a set of means. However, for the process
states in which no process parameter data was collected dur-
ing the model generation phase, the parameter mean values
could be initially set to some arbitrary value, e.g., equal to the
parameter mean values for the nearest state for which data
was collected. After putting the model on-line within a mod-
eling system, when the state parameter value changes to indi-
cate a process state for which no data was previously col-
lected, then the modeling or data analytics system could
perform adaptive modeling by entering into an adaptation
phase.

In particular, during an adaptation phase, the process
parameter data and state parameter data is collected on-line as
the process operates in the new process state. After some time,
or after each new time sample, the mean values for this
process state will be updated based on the values of the
process parameter and state parameter data measured while
the process is operating in the new process state. For each
process state, a user could specify if adaptation of the means
is allowed. This capability could also be used to update the
model (to account for process changes) if the user indicates
that adaptation is allowed. To prevent the mean values from
adapting to incorrect values if the process is shut down, the
user could have the capability to see or view the calculated
mean values on a process state by process state basis, and to
limit how much (e.g., a percent change allowed) the adapta-

US 9,110,452 B2

35

tion of the mean could cause a change from the value
approved by the user and/or identified during model develop-
ment.

If desired, on-line model adaptation may be performed in a
scheduled manner or an unscheduled manner. For example,
when product grade or process rate changes require new
settings for some or most of the process parameters, the
model parameters can be adjusted in a scheduled manner, i.e.,
all at once, if process state and parameter settings for a new
grade (mean values and standard deviations) are known.
However, if the mean values and the process state values for
one or more new states are not known, these values can be
adapted gradually to implement new parameter mean values.

In one example, scheduled model changes can be based on
prior knowledge of the process states for new product grades
which knowledge can be obtained via measurements made
on-line and stored until the scheduled model adaptation pro-
cess is performed. A procedure for developing a model suit-
able for use in applying scheduled changes or scheduled
adaptation may first include a grade or process state identifi-
cation parameter into historical data collection and store data
for that new grade or process state as data becomes available.
The procedure may then preprocess the training data with the
newly collected data, accounting for all of the grades. In
doing so, the procedure calculates mean values and standard
deviations for every grade separately. The procedure may
then normalize the data separately for every grade using the
specific grades mean values and standard deviations for these
grades. The modeling technique then develops one model
using data from multiple grades. Because data is conditioned
by mean values and standard deviations for specific grades,
conditioned/normalized data can be used for a common
multi-grade model development. Next, the method may store
the mean values and standard deviations for every grade used
for model development as part of the multi-grade model.

However, performing unscheduled model adaptation oper-
ates to calculate on-line mean values and standard deviations
at the changed or new state and applies theses new mean
values and standard deviations to the model individually as
these new values are determined. Unscheduled model adap-
tation is used when a new state was not originally included in
the model (e.g., there was no historical or training data for this
specific process state). A process state change could be
detected automatically and the detection may trigger the
adaptive modeling technique to perform a model mean values
and standard deviations change. If new state parameters are
not present in the model, the adaptive adaptation routine
adjusts the model based on the current on-line data collection
and model parameters calculation. Actual process parameter
means and state parameter means to be used as process state
means for the new process state are applied to the model with
some delay after process state change as it takes some time to
collect enough data from the operation of the process on-line
to determined a statistically valuable means for each of the
process parameters and the state parameter in the new process
state. The delay is defined by the successive calculations and
adjustment time.

If desired, the new model parameter mean values will have
a bias relative to the original model parameter mean values.
That is, a model mean value bias 3 can be applied as a filtering
value for determining the adapted mean as:

A ™A "™ (L= BIAT 0™ (K1)

Here, the raw mean is the recently calculated bias defined
during the on-line operation. For a process state shift due to
changed conditions (which may be caused because process
equipment may degrade or other conditions may change in a

10

15

20

25

30

35

40

45

50

55

60

65

36

predicted or unpredicted way), the same mean bias parameter
may be use to filter the adapted means as described above.
Moreover, for other changes or disturbances, some mean
value changes may be constant and/or may be difficult to track
in a practical way. In these cases, it may be desirable to
increase the robustness or sensitivity of the model to mini-
mize false alarming.

While the data analytics techniques discussed above have
been described for continuous analytics (i.e., for performing
analytics in continuous processes), these techniques could
also be applied to simple batch process applications where the
“time in batch” or some other parameter that indicates pro-
gression of the batch processing is used as the state parameter.
In this case, “simple batch” process are those in which 1)
batch processing is confined to one process unit, 2) the inputs/
outputs of the batch process do not change as the batch
progresses and 3) the same product is always manufactured in
the process unit.

Additionally, it is desirable to enable a user to more easily
view and obtain information pertaining to an alarm or an alert
that is generated on a quality prediction or a fault detection,
such as an alarm or an alert generated by the data analytics
function block 700 of FIG. 9. In particular, it is desirable to
add an alert tab to a user interface screen which, when
selected, shows the quality or fault alerts that have been
reported by the continuous data analytics system. In this
system, the user is then able to select an alert or an alarm from
this list and, in response to this selection, the user is automati-
cally provided with the associated history information of the
alert or the alarm, such as the values of prediction or the T? or
Q statistics that lead up to the alert, the parameter values of the
relevant parameters both before and after the alert was issued,
etc. This feature provides significant time savings for the user
in that, rather than the user having to find and scroll back
through a trend plot of predicted quality or fault statics (T or
Q, prediction values, etc.) to find a fault or poor prediction, the
new user interface enables the user to see all of the alerts that
have been generated, and to immediately see the historic data
associated with a selected alert (without scrolling through a
trend display of different process parameters).

This user interface may be used in a broader context in any
process control system interfaces that provide alarm sum-
mary displays that a user can access to view detected process
alarms, as this user interface system enables a user to easily
view historic data associated with different parameters rel-
evant to any types of alarms that have been generated. In
particular, this user interface can be used in any context in
which a process alarm or alert is generated and is provided to
a user via a user interface screen or display, and the new user
interface allows the user to quickly analyze the conditions
that led up to an alarm or an alert because the system allows
the user to see historic process parameter trend data (as stored
in a data historian) immediately before and after an alert was
generated without the user needing to go to an historian
interface, call up the parameter associated with the event and
then scroll back in time to see the trend data immediately
before and after the alert was generated.

As a way of comparison, the manner in which alerts are
currently displayed and analyzed in some traditional user
interface used in batch process control systems is illustrated
in FIG. 10. At a top level, a list of active processes, such as
batch processes and a list of completed batches is illustrated.
If an alert is active in one of the processes, this alert is
indicated in the overview (see screen 902). The user may then
select a batch process from this overview and then (by
default) the user interface changes to show a historic trend of
the two statistics (the T and Q statistics of a PCA model) that

US 9,110,452 B2

37

are used for fault detection (see screen 904). If either statistic
exceeds a value of one (1) then this is considered to be a fault
condition. To examine the process measurements that are
associated with a fault, it is necessary for the user to examine
the historic trend of the two statistical parameters, find a time
when the statistics exceeded a value of one, and then select
that point in time on the displayed trend. In response, the user
is then shown the measurements that most contributed to the
fault (see screens 906 and 908).

Similarly, when a quality prediction alarm is indicated in
the overview, the user is provided with the ability to select the
process and to then select the quality prediction tab. In
response, the user interface system displays a historic trend of
the quality parameter (see screen 910). The user interface then
allows the user to examine the quality parameter trend to
determine when the prediction exceeded a product specifica-
tion limit. To explore the cause of a deviation in quality
prediction above or below a specification limit, the user must
then select this point in time within the trend plot, select the
fault detection tab and examine the historic trend to see if a
fault was detected at the time of the quality parameter alarm.

There are significant limitations and disadvantages of this
traditional approach in exploring an alert condition. In par-
ticular, in the overview, the user only knows that an alert is
currently active and to find more information about past
alerts, it is necessary for the user to 1) select a historic trend of
the statistics used in process fault detection or of the predicted
quality parameter, 2) examine the trend to determine when the
alert(s) occurred and then 3) select the point in the trend
where the alert occurred to find more information about the
alert condition. Moreover, to find all of the alerts that have
occurred in the past, it would be necessary to find and select
each alert within statistical parameters trend plots or the pre-
dicted quality trend plots, which is time consuming and
tedious. In fact, it is time consuming to scroll back in the trend
history to find when an alert condition was active for either a
continuous process or a batch process. As a result, it may not
be possible to easily analyze all past alerts to find common
problems, etc. Also, alerts that indicate conditions that con-
tributed to the production of off-specification products may
be easily overlooked.

The new user interface described herein, however, enables
a user to examine alerts that are currently active or that have
occurred in the past. For the continuous data analytics appli-
cation, alerts may be triggered by the predicted product qual-
ity exceeding user defined or calculated limits (such as prod-
uct specification or confidence limits) or by process faults that
have been detected (utilizing a PCA model and its associated
statistics).

More particularly, with the new user interface, a continu-
ous list tab is provided in a user interface screen and, when
this tab is selected, an overview is provided of the continuous
data analytics blocks (CDA blocks such as that of FIG. 9) that
are currently installed in the control system for quality pre-
diction and/or fault detection. In this overview, the last quality
prediction or process fault is shown for each CDA block, as
illustrated in FIG. 11A.

Significantly, an alarm history tab has been added to the
user interface screen to enable a user to view all of the data
analytic alerts that have been detected. When a user selects
this tab, the user interface displays a list of current and past
alerts. The example user interface screen of FIG. 11B shows
an alarm history view where only one (1) alert has occurred in
the past. In general this view would contain many process
faults and quality parameter prediction alarms.

When a user selects one of the alerts in the summary list,
the user interface changes the display to show the associated

10

15

20

25

30

35

40

45

50

55

60

65

38

quality parameter prediction or process fault detection trend
centered about the time of the alert. An example of the view
provided for a process faults is illustrated in FIG. 11C.

Next, when a user selects one of the parameters that con-
tributed to the fault, the user interface provides historic infor-
mation for this parameter (e.g., a parameter trend plot) using
parameter data at the time of the fault. This operation is
illustrated in the screen image of FIG. 11D. Of course, the
user interface system may access this data from the data
historian for the time period associated with the alert (e.g.,
when the alert was generated).

This ability to easily view all of the alerts that have
occurred in the past and to easily access associated historic
information at the time of the alert has many advantages over
the traditional alarm summary interface, which does not pro-
vide an alert summary and provides no support to display
associated historic information at the time of the alert.

Moreover, there are other applications for the alert inter-
face illustrated in FIGS. 11A-11D outside of the use with the
data analytic blocks described herein. In fact, the concepts
associated with the alert interface described as being imple-
mented in continuous data analytics can be applied to many
other applications. As an example, an “alarm list” button is
provided in the standard DeltaV™ operator interface. When
the operator makes this selection, a list of current active
alarms is displayed, as illustrated in FIG. 12A.

When viewing the alarm list, no support is provided for the
user to easily access and examine values of the process
parameter(s) in the alarm around the time that the alarm was
detected. However, using the use interface described herein,
the alarm list display is modified to support the display of
associated historic information at the time of an alarm
selected in this list, which makes it much easier and faster for
a user to analyze the source of the alarm. This concept is
illustrated in FIG. 12B where a user can see an alarm list and
selectan alarm to see trend data for the alarm variable (i.e., the
variable that was used to generate the alarm).

Additionally, if the measurements in the alarm are associ-
ated with other parameters, the user interface can provide the
user with the option to request that the historian values of
associated parameters around the time of the alarm also be
displayed. For example if the parameter in alarm is the PV of
a PID block or is an input of an MPC block, etc., then any
other parameter(s) of the block that is assigned to the historian
could be displayed around the time of the alarm. Such a
display is illustrated in FIG. 12C. By allowing associated
historic information at the time of the alarm to be easy
accessed and displayed, it is easier and quicker for the opera-
tor to analyze the source of the problem.

As noted above, at least some of the above described
example methods and/or apparatus may be implemented by
one or more software and/or firmware programs running on a
computer processor. However, dedicated hardware imple-
mentations including, but not limited to, application specific
integrated circuits, programmable logic arrays and other
hardware devices can likewise be constructed to implement
some or all of the example methods and/or apparatus
described herein, either in whole or in part. Furthermore,
alternative software implementations including, but not lim-
ited to, distributed processing or component/object distrib-
uted processing, parallel processing, or virtual machine pro-
cessing can also be constructed to implement the example
methods and/or systems described herein.

It should also be noted that the example software and/or
firmware implementations described herein are stored on a
tangible storage medium, such as a magnetic medium (e.g., a
magnetic disk or tape), a magneto-optical or optical medium

US 9,110,452 B2

39

such as an optical disk, or a solid state medium such as a
memory card or other package that houses one or more read-
only (non-volatile) memories, random access memories, or
other re-writable (volatile) memories. Accordingly, the
example software and/or firmware described herein can be
stored on a tangible storage medium such as those described
above or successor storage media. To the extent the above
specification describes example components and functions
with reference to particular standards and protocols, it is
understood that the scope of this patent is not limited to such
standards and protocols. For instance, each of the standards
for internet and other packet-switched network transmission
(e.g., Transmission Control Protocol (TCP)/Internet Protocol
(IP), User Datagram Protocol (UDP)/IP, HyperText Markup
Language (HTML), HyperText Transfer Protocol (HTTP))
represent examples of the current state of the art. Such stan-
dards are periodically superseded by faster or more efficient
equivalents having the same general functionality. Accord-
ingly, replacement standards and protocols having the same
functions are equivalents which are contemplated by this
patent and are intended to be included within the scope of the
accompanying claims.

Additionally, although this patent discloses example meth-
ods and apparatus including software or firmware executed
on hardware, it should be noted that such systems are merely
illustrative and should not be considered as limiting. For
example, it is contemplated that any or all of these hardware
and software components could be embodied exclusively in
hardware, exclusively in software, exclusively in firmware or
in some combination of hardware, firmware and/or software.
Accordingly, while the above specification describes
example methods, systems, and/or machine-accessible
medium, the examples are not the only way to implement
such systems, methods and machine-accessible medium.
Therefore, although certain example methods, systems, and
machine-accessible medium have been described herein, the
scope of coverage of this patent is not limited thereto.

The invention claimed is:

1. A computer implemented method of generating a pro-
cess model for use in analyzing the operation of a process that
is capable of operating in a number of different process states
as defined by a state variable associated with the process,
comprising:

collecting training data from the process during operation

of the process, the training data including a value for
each of a set of process parameters, a value for the state
variable and a value of a result variable associated with
each of a multiplicity of different process measurement
times;

dividing the training data into time slices of data, using a

computer processing device, to produce a set of time
sliced data for each time slice of data, wherein each set
of time sliced data includes a value for each of the set of
process parameters, a value for the state variable and a
value for the result variable;

storing the sets of time sliced data in a computer memory;

determining, using a computer processing device, a set of

process state means from the training data, the set of
process state means including a state variable mean for
each of the process states and one or more process
parameter means for each of the process states;

storing the set of process state means in a computer

memory;

developing, using a computer processing device, a set of

time slice means for each of the time slices of data using

10

20

25

30

35

40

45

50

55

60

65

40

the stored process state means, each of the sets of time
slice means including a time slice mean for each of the
process parameters;

developing, using a computer processing device, a set of

deviations from the mean for each time slice of data, the
set of deviations from the mean for a particular time slice
of data including, for each process parameter within the
particular time slice of data, using the process parameter
value of the particular time slice of data and the time
slice mean for the process parameter for the particular
time slice of data to develop the deviation from the mean
for the process parameter for the particular time slice of
data; and

generating, using a computer processing device, a process

model using the sets of deviations from the mean for the
time slices of data and the result variable values for the
time slices of data.

2. The computer implemented method of claim 1, wherein
generating the process model includes generating a process
model that uses other sets of deviations from the mean of the
process parameters to predict a value of the result variable.

3. The computer implemented method of claim 1, further
including filtering one or more of the deviations from the
mean of each set of deviations from the mean prior to gener-
ating the process model.

4. The computer implemented method of claim 3, wherein
filtering one or more of the deviations from the means
includes low pass filtering the one or more of the deviations
from the means using a low pass filter having a time constant
based on a time response for one or more of the process
parameters associated with the process undergoing a change
of process state.

5. The computer implemented method of claim 1, wherein
dividing the training data into time slices of data includes time
shifting one or more of the process parameter values, the state
variable value and the result variable value of the training data
with respect to one another to form the time slices of data.

6. The computer implemented method of claim 5, wherein
time shifting includes performing a cross correlation between
at least one of the process parameters or the state variable and
the result variable to determine a time delay amount associ-
ated with the at least one of the process parameters or the state
variable and the result variable, and time shifting the process
parameter values for the at least one of the process parameters
or the state variable values for the state variable with respect
to the result variable values of the result variable by the time
delay amount so that each time slice of data includes at least
one of the process parameter value or a state variable value
that is shifted in time with respect to the result variable value.

7. The computer implemented method of claim 1, wherein
dividing the collected data into time slices of data includes
time shifting one or more of the process parameter values and
the state variable values in the training data with respect to the
result variable values in the training data.

8. The computer implemented method of claim 1, wherein
the state variable is indicative of a product grade, a throughput
of'the process, a production rate, or a disturbance variable of
the process.

9. The computer implemented method of claim 1, further
including storing the determined process state means for the
process states as part of the generated process model.

10. The computer implemented method of claim 9, further
including collecting new process parameter values and state
variable values from the operating process, and using the
collected new process parameter values and the state variable

US 9,110,452 B2

41

values and the process state means to develop inputs to the
generated process model to develop an estimate of the result
variable.
11. The computer implemented method of claim 10, fur-
ther including using the estimate of the result variable to
perform quality prediction or fault detection for the process
during ongoing operation of the process.
12. The computer implemented method of claim 1,
wherein developing the set of time slice means for each of the
time slices of data includes determining, for each process
parameter in a particular time slice of data, an interpolation
factor for the particular time slice of data using the value of
the state variable for the particular time slice of data and the
state variable mean for the process states between which the
value of the state variable for the particular time slice of data
falls and determining the time slice means for each of the
process parameters for the particular time slice of data using
the interpolation factor and the values of the process param-
eter means for the process states between which the value of
the state variable for the time slice of data falls.
13. A computer implemented method of forming a process
prediction model, comprising:
collecting process parameter values for a set of process
parameters, state variable values for a state variable and
result variable values for a result variable from an oper-
ating process for each of a number of process times;

determining, using a computer processing device, a set of
process state means, wherein the set of process state
means includes, for each of multiple process states, a
mean value of the state variable and a mean value of each
of'the process parameters when the process is operating
in each of the multiple process states;

determining, using a computer processing device, for each

of multiple sets of time-related data, a time slice mean
for each of the set of process parameters using the pro-
cess state means and a value of the state variable asso-
ciated with each of multiple sets of time-related data;
determining, using a computer processing device, a devia-
tion from the mean for each of the process parameters for
each of the multiple sets of time-related data using the
time slice means and the process parameter values of
each of the multiple sets of time-related data, and
using, within a computer processing device, the deter-
mined deviation from the mean for each of the process
parameters for each of the multiple sets of time-related
data and the result variable values of each of the multiple
sets of time-related data to generate a process prediction
model capable of operating on a computer processing
device to predict the result variable within the process.

14. The computer implemented method of claim 13, fur-
ther including determining a definition of a state variable
range for each of the multiple process states and wherein
determining a set of process state means includes, for each of
the multiple process states, determining a mean value of the
state variable using the state variable values falling within the
defined state variable range for each particular process state
and a process parameter mean using the process parameter
values associated with state variable values falling within the
defined state variable range for each particular process state.

15. The computer implemented method of claim 13, fur-
ther including filtering one or more of the deviations from the
mean prior to the generation of the process prediction model.

16. The computer implemented method of claim 13, fur-
ther including, prior to determining a set of process state
means, forming each of multiple sets of time-related data by
time shifting one or more of the process parameter values, the
state variable values and the result variable values with

20

25

35

40

45

50

42

respect to one another in time so as to form the sets of time-
related data having data from different measurement times.
17. The computer implemented method of claim 16, fur-
ther including performing a cross correlation between at least
one of the process parameters or the state variable and the
result variable to determine a time delay amount associated
with the process parameter or the state variable and the result
variable, and time shifting the process parameter values for
the process parameter or the state variable values for the state
variable with respect to the result variable values of the result
variable by the time delay amount so that each set of time-
related data includes at least one of the process parameter
value or a state variable value that is shifted in time with
respect to the result variable value.
18. The computer implemented method of claim 13,
wherein determining, for each of multiple sets of time-related
data, a time slice mean for each of the set of process param-
eters includes determining an interpolation factor for a par-
ticular set of time-related data using the value of the state
variable for the particular set of time-related data and the state
variable means for the process states between which the value
of'the state variable for the particular set of time-related data
falls and determining the process parameter means for the
process parameters for the particular set of time-related data
using the interpolation factor and the values of the process
parameter means for the process parameter associated with
the process states between which the value of the state vari-
able for the set of time-related data falls.
19. A computer implemented method of measuring process
quality or a process fault in an operating process, comprising:
storing a process prediction model in a computer memory,
wherein the process prediction model takes, as a set of
inputs, a set of deviations from means for each of a set of
process parameters and produces, as an output, a pre-
dicted process quality value or a process fault value;

collecting process parameter data for each of the set of
process parameters and process state variable data for a
process state variable from the process during online
operation of the process for a multiplicity of measure-
ment times;
developing, using a computer processing device, a series of
time slices of data, each time slice of data including a
process parameter value for each of the set of process
parameters and a process state variable value;

determining, using a computer processing device, a devia-
tion from a mean for each of the process parameters for
each of the time slices of data; and

providing, using a computer processing device, the deter-

mined deviations from the means for each of the time
slices of data as inputs to the process prediction model
while executing the process prediction model on the
computer processing device to produce a prediction of
the process quality value or the process fault value.

20. The computer implemented method of claim 19,
wherein determining the deviations from the means for each
of the time slices of data includes determining a time slice
mean for a particular process parameter of a time slice from a
stored set of process state means stored as part of the process
prediction model.

21. The computer implemented method of claim 20,
wherein determining a time slice mean for a particular pro-
cess parameter of a time slice of data includes determining an
interpolation factor for the time slice of data using the value of
the state variable for the time slice of data and stored state
variable means for process states between which the value of
the state variable for the time slice of data falls and calculating
the time slice means for the particular process parameter for

US 9,110,452 B2

43

the time slice of data using the interpolation factor and the
values of a set of process parameter means for the particular
process parameter for the process states between which the
value of the state variable for the time slice of data falls.

22. The computer implemented method of claim 19, fur-
ther including time shifting one or more of the collected
process parameter values or the collected process state vari-
able values in time with respect to one another to develop the
series of times slices of data.

23. The computer implemented method of claim 19, fur-
ther including collecting new process parameter values and
state variable values for the process and adapting the process
prediction model by determining a new set of process state
means from the collected new process parameter values and
the state variable values and storing the new set of process
state means as part of the process prediction model.

24. A process model development system for use in mod-
eling the operation of a process, comprising:

a computer readable memory;

a data collection unit that stores, in the computer-readable

memory, a process parameter value for each of a plural-
ity of process parameters determined from the process, a
state variable value for a state variable determined from
the process and a result variable value for a result vari-
able determined from the process for each of a number of
different process operational times;

a time slice determination unit that determines a series of
time slices of data from the data stored by the data
collection unit, wherein each time slice of data includes
a process parameter value for each of the plurality of
process parameters, a state variable value for the state
variable and a result variable value for the result vari-
able;

a process state mean calculation unit that determines a set
of process state means for each of a multiplicity of
process states, wherein the set of process state means for
a particular process state includes a mean of the state
variable value from each of the time slices of data in
which the state variable value is in a range associated
with the particular process state, and a mean value of
each of the process parameter values from each of the
time slices of data in which the state variable value is in
a range associated with the particular process state;

a time slice mean calculation unit that calculates a time
slice mean value for each of the process parameters for
each of the time slices of data;

a deviation calculation unit that calculates a deviation from
the time slice mean value for each of the process param-
eters for each of the time slices of data, wherein the
deviation calculation unit calculates a deviation from the
time slice mean for a particular process parameter by
calculating a difference between the particular process
parameter value of the time slice of data and the time
slice mean of the time slice of data for the particular
process parameter; and

a process model generation unit that uses the deviations
from the time slice mean values for the time slices of
data and the result variable data to develop a statistical
process model that predicts values of the result variable
based on deviations from means of process parameters.

25. The process model development system of claim 24,
wherein the time slice determination unit includes a delay
unit that shifts one or more of the process parameter values or
the state variable values in time with respect to the result
variable value by a time delay amount as part of determining

25

40

45

44

the series of time slices of data from the data stored by the data
collection unit, so that each time slice of data includes a
process parameter value for one or more of the plurality of
process parameters or a state variable value for the state
variable that is shifted in time with respect to the result vari-
able value of the time slice of data.

26. The process model development system of claim 25,
further including a cross-correlation unit that performs a
cross-correlation between one of the process parameters or
the state variable and the result variable to determine the time
delay amount used by the delay unit to shift the one or more
of'the process parameter values or the state variable values in
time with respect to the result variable values.

27. The process model development system of claim 25,
wherein the process model generation unit stores the process
state means and the time delay amount as part of the generated
statistical process model.

28. The process model development system of claim 24,
further including a filter unit disposed between the deviation
calculation unit and the process model generation unit that
filters the deviations from the time slice mean values for each
of'the process parameters for each of the time slices of data.

29. A process monitoring system for use in monitoring the
operation of a process, comprising:

a data collection unit that stores, in the computer-readable
memory, a process parameter value for each of a plural-
ity of process parameters determined from the process
during operation of the process and a state variable value
for a state variable determined from the process during
operation of the process for each of a number of different
process operational times;

a time slice determination unit that determines a series of
time slices of data from the data stored by the data
collection unit, wherein each time slice of data includes
a process parameter value for each of the plurality of
process parameters and a state variable value for the
state variable;

a time slice mean calculation unit that calculates a time
slice mean value for each of the process parameters for
each of the time slices of data;

a deviation calculation unit that calculates a deviation from
the time slice mean value for each of the process param-
eters for each of the time slices of data, wherein the
deviation calculation unit calculates a deviation from the
time slice mean for a particular process parameter for a
particular time slice of data by calculating a difference
between the particular process parameter value of the
particular time slice of data and the time slice mean of
the particular process parameter of the particular time
slice of data; and

a statistical process model stored on a computer readable
memory that executes on a processor to predict values of
a result variable based on the deviations from the time
slice means of the set of process parameters associated
with the process.

30. The process monitoring system of claim 29, wherein
the time slice determination unit includes a delay unit that
shifts one or more of the process parameter values or the state
variable values in time by a time delay amount as part of
determining the series of time slices of data from the data
stored by the data collection unit, so that each time slice of
data includes a process parameter value for one or more ofthe
plurality of process parameters or a state variable value for the
state variable that is shifted in time by the time delay amount.

#* #* #* #* #*

